Objective:Near vision loss(NVL)is one of the leading causes of visual impairment worldwide,exerting a profound impact on individual quality of life and socio-economic development.This study aims to analyze the burden ...Objective:Near vision loss(NVL)is one of the leading causes of visual impairment worldwide,exerting a profound impact on individual quality of life and socio-economic development.This study aims to analyze the burden of NVL in China by sex and age groups from 1990 to 2021 and to project trends over the next 15 years.Methods:Using data from the Global Burden of Disease(GBD)2021 database,we conducted descriptive analyses of NVL prevalence in China,calculated age-standardized prevalence rates(ASPR)and age-standardized disability-adjusted life years rates(ASDR)to compare burden differences between sexes and age groups,and applied an autoregressive integrated moving average(ARIMA)model to predict NVL trends for the next 15 years.The model selection was based on best-fit criteria to ensure reliable projections.Results:From 1990 to 2021,China’s ASPR of NVL rose from 10096.24/100000 to 15624.54/100000,and ASDR increased from 101.75/100000 to 158.75/100000.In 2021,ASPR(16551.70/100000)and ASDR(167.69/100000)were higher among females than males(14686.21/100000 and 149.76/100000,respectively).China ranked highest globally in both NVL cases and disability-adjusted life years(DALYs),with female burden significantly exceeding male burden.Projections indicated this trend and sex gap will persist until 2036.Compared with 1990,the prevalence cases and DALYs increased by 239.20%and 238.82%,respectively in 2021,with the highest burden among females and the 55−59 age group.The ARIMA model predicted continued increases in prevalence and DALYs by 2036,with females maintaining a higher burden than males.Conclusion:This study reveals a marked increase in the NVL burden in China and predicts continued growth in the coming years.Public health policies should prioritize NVL prevention and control,with special attention to women and middle-aged populations to mitigate long-term societal and health impacts.展开更多
The remanufacturing system is remolding the manufacturing industry by bringing scrapped products back to such a condition that reintegrated performance is just as good as new.The remanufacturing environment is feature...The remanufacturing system is remolding the manufacturing industry by bringing scrapped products back to such a condition that reintegrated performance is just as good as new.The remanufacturing environment is featured by a far deeper level of uncertainty than new manufacturing,such as probabilistic routing files,and highly variable processing time.The stochastic disturbances result in the production bottlenecks,which constrain the productivity of the job shop.The uncertainties in the remanufacturing process cause the bottlenecks to shift when the workshop is processing.Considering this outstanding problem,many researchers try to optimize the production process to mitigate dynamic bottlenecks toward a balanced state.This paper proposes a data-driven method to predict bottlenecks in the remanufacturing system with multi-variant uncertainties.Firstly,discrete event simulation technology is applied to establish a simulation model of the remanufacturing production line and calculate the bottleneck index to identify bottlenecks.Secondly,a data-driven method,auto-regressive moving average(ARMA)model is employed to predict the bottlenecks in the system based on real-time data captured by the Arena software.Finally,the proposed prediction method is verified on real data from the automobile engine remanufacturing production line.展开更多
Nonlocal continuum mechanics is a popular growing theory for investigating the dynamic behavior of Carbon nanotubes(CNTs).Estimating the nonlocal constant is a crucial step in mathematical modeling of CNTs vibration b...Nonlocal continuum mechanics is a popular growing theory for investigating the dynamic behavior of Carbon nanotubes(CNTs).Estimating the nonlocal constant is a crucial step in mathematical modeling of CNTs vibration behavior based on this theory.Accordingly,in this study a vibration-based nonlocal parameter estimation technique,which can be competitive because of its lower instrumentation and data analysis costs,is proposed.To this end,the nonlocal models of the CNT by using the linear and nonlinear theories are established.Then,time response of the CNT to impulsive force is derived by solving the governing equations numerically.By using these time responses the parametric model of the CNT is constructed via the autoregressive moving average(ARMA)method.The appropriate ARMA parameters,which are chosen by an introduced feature reduction technique,are considered features to identify the value of the nonlocal constant.In this regard,a multi-layer perceptron(MLP)network has been trained to construct the complex relation between the ARMA parameters and the nonlocal constant.After training the MLP,based on the assumed linear and nonlinear models,the ability of the proposed method is evaluated and it is shown that the nonlocal parameter can be estimated with high accuracy in the presence/absence of nonlinearity.展开更多
针对模态辨识结果对输入的敏感性,研究了测量信息对飞行器工作模态辨识精度的影响。介绍了自回归-滑动平均(auto-regressive and moving average,简称ARMA)模型环境激励模态辨识方法的理论、试验测点和激励情况,并给出了试验研究方案情...针对模态辨识结果对输入的敏感性,研究了测量信息对飞行器工作模态辨识精度的影响。介绍了自回归-滑动平均(auto-regressive and moving average,简称ARMA)模型环境激励模态辨识方法的理论、试验测点和激励情况,并给出了试验研究方案情况。通过选择不同测点布置组合,研究了测点布置对辨识结果的影响。对各测点数据人为增加噪声,研究了数据品质对辨识结果的影响。研究发现,测点数目较多,且测点布置在振型数值较大位置,辨识结果较好。展开更多
基金supported by the Natural Science Foundation of Hunan Province(2023JJ30817)Hunan Provincial Natural Science Foundation-Hengyang City Joint Fund Project(2025JJ70129)+1 种基金Changsha Natural Science Foundation(kq2403057)China。
文摘Objective:Near vision loss(NVL)is one of the leading causes of visual impairment worldwide,exerting a profound impact on individual quality of life and socio-economic development.This study aims to analyze the burden of NVL in China by sex and age groups from 1990 to 2021 and to project trends over the next 15 years.Methods:Using data from the Global Burden of Disease(GBD)2021 database,we conducted descriptive analyses of NVL prevalence in China,calculated age-standardized prevalence rates(ASPR)and age-standardized disability-adjusted life years rates(ASDR)to compare burden differences between sexes and age groups,and applied an autoregressive integrated moving average(ARIMA)model to predict NVL trends for the next 15 years.The model selection was based on best-fit criteria to ensure reliable projections.Results:From 1990 to 2021,China’s ASPR of NVL rose from 10096.24/100000 to 15624.54/100000,and ASDR increased from 101.75/100000 to 158.75/100000.In 2021,ASPR(16551.70/100000)and ASDR(167.69/100000)were higher among females than males(14686.21/100000 and 149.76/100000,respectively).China ranked highest globally in both NVL cases and disability-adjusted life years(DALYs),with female burden significantly exceeding male burden.Projections indicated this trend and sex gap will persist until 2036.Compared with 1990,the prevalence cases and DALYs increased by 239.20%and 238.82%,respectively in 2021,with the highest burden among females and the 55−59 age group.The ARIMA model predicted continued increases in prevalence and DALYs by 2036,with females maintaining a higher burden than males.Conclusion:This study reveals a marked increase in the NVL burden in China and predicts continued growth in the coming years.Public health policies should prioritize NVL prevention and control,with special attention to women and middle-aged populations to mitigate long-term societal and health impacts.
基金Projects(51975099,51775086)supported by the Natural Science Foundation of China。
文摘The remanufacturing system is remolding the manufacturing industry by bringing scrapped products back to such a condition that reintegrated performance is just as good as new.The remanufacturing environment is featured by a far deeper level of uncertainty than new manufacturing,such as probabilistic routing files,and highly variable processing time.The stochastic disturbances result in the production bottlenecks,which constrain the productivity of the job shop.The uncertainties in the remanufacturing process cause the bottlenecks to shift when the workshop is processing.Considering this outstanding problem,many researchers try to optimize the production process to mitigate dynamic bottlenecks toward a balanced state.This paper proposes a data-driven method to predict bottlenecks in the remanufacturing system with multi-variant uncertainties.Firstly,discrete event simulation technology is applied to establish a simulation model of the remanufacturing production line and calculate the bottleneck index to identify bottlenecks.Secondly,a data-driven method,auto-regressive moving average(ARMA)model is employed to predict the bottlenecks in the system based on real-time data captured by the Arena software.Finally,the proposed prediction method is verified on real data from the automobile engine remanufacturing production line.
文摘Nonlocal continuum mechanics is a popular growing theory for investigating the dynamic behavior of Carbon nanotubes(CNTs).Estimating the nonlocal constant is a crucial step in mathematical modeling of CNTs vibration behavior based on this theory.Accordingly,in this study a vibration-based nonlocal parameter estimation technique,which can be competitive because of its lower instrumentation and data analysis costs,is proposed.To this end,the nonlocal models of the CNT by using the linear and nonlinear theories are established.Then,time response of the CNT to impulsive force is derived by solving the governing equations numerically.By using these time responses the parametric model of the CNT is constructed via the autoregressive moving average(ARMA)method.The appropriate ARMA parameters,which are chosen by an introduced feature reduction technique,are considered features to identify the value of the nonlocal constant.In this regard,a multi-layer perceptron(MLP)network has been trained to construct the complex relation between the ARMA parameters and the nonlocal constant.After training the MLP,based on the assumed linear and nonlinear models,the ability of the proposed method is evaluated and it is shown that the nonlocal parameter can be estimated with high accuracy in the presence/absence of nonlinearity.
文摘针对模态辨识结果对输入的敏感性,研究了测量信息对飞行器工作模态辨识精度的影响。介绍了自回归-滑动平均(auto-regressive and moving average,简称ARMA)模型环境激励模态辨识方法的理论、试验测点和激励情况,并给出了试验研究方案情况。通过选择不同测点布置组合,研究了测点布置对辨识结果的影响。对各测点数据人为增加噪声,研究了数据品质对辨识结果的影响。研究发现,测点数目较多,且测点布置在振型数值较大位置,辨识结果较好。