期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
基于WPD-FEEMD和ARIMA-LSTM的油井产量预测方法 被引量:1
1
作者 张晓东 李敏 《传感器与微系统》 北大核心 2025年第6期161-164,168,共5页
针对油井生产过程中间歇开关井等人工操作导致产量序列非线性波动、非线性趋势混叠等问题,提出了一种混合二次分解算法和差分自回归综合移动平均—长短期记忆网络(ARIMA-LSTM)的单井产量预测方法。该方法首先采用小波包分解(WPD)将原始... 针对油井生产过程中间歇开关井等人工操作导致产量序列非线性波动、非线性趋势混叠等问题,提出了一种混合二次分解算法和差分自回归综合移动平均—长短期记忆网络(ARIMA-LSTM)的单井产量预测方法。该方法首先采用小波包分解(WPD)将原始产量序列分解为低频分量和高频分量;然后采用快速集合经验模态分解(FEEMD)分解高频分量,进一步降低高频分量的非平稳性,同时去除模式混叠;针对各子序列,分别构建基于ARIMA-LSTM的时序预测模型,该模型使用ARIMA过滤序列中的线性趋势,并将残差传递给Bi-LSTM提取非线性趋势;最后融合各子序列预测结果,得到油井产量预测值。算例研究结果表明,相较于支持向量回归(SVR)、LSTM等模型,所提方法具有更高的预测精度。 展开更多
关键词 产量预测 人工操作 小波包分解 快速集合经验模态分解 自回归综合移动平均 长短期记忆
在线阅读 下载PDF
利用卡尔曼滤波综合算法构建开采沉陷预测模型 被引量:8
2
作者 陈竹安 熊鑫 危小建 《金属矿山》 CAS 北大核心 2019年第5期132-136,共5页
为提高矿区地表沉陷预测精度,提出了基于自回归综合移动平均模型(Autoregressive Integrated Moving Average,ARIMA)的卡尔曼滤波模型与Elman神经网络相结合的综合预测模型。首先,针对沉陷监测序列的非平稳性与复杂性特点,ARIMA模型能... 为提高矿区地表沉陷预测精度,提出了基于自回归综合移动平均模型(Autoregressive Integrated Moving Average,ARIMA)的卡尔曼滤波模型与Elman神经网络相结合的综合预测模型。首先,针对沉陷监测序列的非平稳性与复杂性特点,ARIMA模型能够将原始数列平稳化,构建地表下沉预测模型,并作为卡尔曼滤波的状态方程;然后将Elman神经网络的沉陷预测结果作为观测值引入卡尔曼滤波观测方程中,建立综合预测模型;最后针对噪声方差Q与R选取的问题,统计出ARIMA模型与Elman神经网络模型的误差特性,从而计算出噪声Q与R的取值。分别将综合预测模型与BP神经网络模型、Elman神经网络模型以及卡尔曼滤波模型进行了预测精度对比,4种模型预测值与实测值的均方根误差分别为2.06、5.857 8、2.926 9、3.688 9 mm,相对误差分别为1.170 4%、3.0502%、1.432 6%、1.908 4%,绝对误差平均值分别为1.886 7、10.703 9、2.329 4、2.807 6 mm。研究表明:综合预测模型能够有效减小单一预测机制造成的同一性质误差累积,其预测精度明显优于其余3种模型,对于大幅提升矿区地表沉陷的预测精度有一定的参考价值。 展开更多
关键词 开采沉陷 卡尔曼滤波 自回归综合移动平均模型 ELMAN神经网络 综合预测模型 BP神经网络
在线阅读 下载PDF
基于MPA-BPNN和ARIMA的港口货物吞吐量预测
3
作者 戴红伟 王博文 《上海海事大学学报》 北大核心 2025年第3期95-103,共9页
为提高港口货物吞吐量预测的准确性,分别构建由海洋捕食者算法(marine predators algorithm,MPA)优化的反向传播神经网络(back-propagation neural network,BPNN)预测模型(记为MPA-BPNN模型)和自回归综合移动平均(autoregressive integr... 为提高港口货物吞吐量预测的准确性,分别构建由海洋捕食者算法(marine predators algorithm,MPA)优化的反向传播神经网络(back-propagation neural network,BPNN)预测模型(记为MPA-BPNN模型)和自回归综合移动平均(autoregressive integrated moving average,ARIMA)预测模型。在灰色关联分析和Spearman相关分析的基础上,利用MPA-BPNN模型对宁波港港口货物吞吐量进行预测。对时间序列进行平稳性检验和自相关检验后,利用ARIMA模型对宁波港港口货物吞吐量进行预测。分别以2021—2022年、2015—2022年为预测区间,比较BPNN、MPA-BPNN和ARIMA模型的预测效果。结果表明:地区生产总值等因素对宁波港港口货物吞吐量具有重要显著影响;MPA-BPNN模型具有一定的寻优能力,其预测准确性比BPNN的高;在数据序列整体波动不剧烈的情况下,短期预测更适用ARIMA模型,中长期预测更适用神经网络模型。 展开更多
关键词 港口货物吞吐量预测 反向传播神经网络(BPNN) 海洋捕食者算法(MPA) 自回归综合移动平均(ARIMA)
在线阅读 下载PDF
基于ARIMA-SVR模型的轨道交通车辆关键设备检修偶换件数量预测
4
作者 王玥龙 刘鹏 姚伟君 《城市轨道交通研究》 北大核心 2025年第3期246-251,共6页
[目的]准确预测轨道交通车辆关键设备检修偶换件数量,可为科学的备件管理提供依据,提高检修经济性。但是现有预测方法准确性不足,预测效果差,因此有必要针对检修偶换件数量预测问题进行深入研究。[方法]根据轨道交通车辆设备检修偶换件... [目的]准确预测轨道交通车辆关键设备检修偶换件数量,可为科学的备件管理提供依据,提高检修经济性。但是现有预测方法准确性不足,预测效果差,因此有必要针对检修偶换件数量预测问题进行深入研究。[方法]根据轨道交通车辆设备检修偶换件数据的特性,构建了检修偶换率(即偶换件更换比例)和检修量的月度时间序列。通过深入研究时间序列预测算法,并对比各类预测算法的效果,综合考虑准确性与泛化能力,提出了一种结合ARIMA(自回归综合移动平均法)与SVR(支持向量回归算法)的计算方法。首先利用ARIMA进行偶换率的预测,然后运用SVR进行检修量的预测,最后结合偶换率与检修量的预测结果来计算偶换件的预测数量。此外,还结合了ARIMA预测的置信区间与无监督聚类IForest(孤立森林)算法,提出了一种偶换率异常检测方法。[结果及结论]以高度阀和制动夹钳单元这两种典型产品的高级修数据为例,对所提出的预测方法进行了验证计算。结果表明,与现有的历史平均法相比,该方法的预测准确性得到了显著提升,并且能够有效地检测出历史和当前的检修偶换率异常情况。 展开更多
关键词 轨道交通车辆 偶换件 自回归综合移动平均 支持向量回归算法 孤立森林
在线阅读 下载PDF
基于中断时间序列分析评估河南省新冠病毒感染疫情防控对手足口病流行趋势的影响 被引量:3
5
作者 李言言 李鑫潇 +2 位作者 张冰洁 薛晨路 王永斌 《郑州大学学报(医学版)》 CAS 北大核心 2024年第4期459-463,共5页
目的:使用中断时间序列分析方法评估河南省新冠病毒感染疫情防控对手足口病流行趋势的影响。方法:从河南省卫生健康委员会法定报告传染病系统中收集2013年1月至2022年9月手足口病发病数据。用河南省2013年1月至2019年6月手足口病发病数... 目的:使用中断时间序列分析方法评估河南省新冠病毒感染疫情防控对手足口病流行趋势的影响。方法:从河南省卫生健康委员会法定报告传染病系统中收集2013年1月至2022年9月手足口病发病数据。用河南省2013年1月至2019年6月手足口病发病数据构建ARIMA预测模型,用2019年7月至2019年12月数据验证模型的预测效果。以该模型预测的2020年1月至2022年9月(疫情防控期间)手足口病发病数据为预测值,同期报告数据为真实值,采用阶跃变化、脉冲变化两种评价方法,分析疫情防控对手足口病发病的影响。结果:ARIMA(0,1,1)(0,1,1)12模型的MA1=0.43(t=3.14,P<0.001),SMA1=-0.62(t=6.94,P<0.001);根据AIC、AICC和BIC最小,LL最大,确定其为最优模型。该模型的预测值与真实值的平均相对误差为10.20%。疫情防控期间估计的手足口病发病数阶跃变化为-3471(95%CI为-11794~4852)例,估计的脉冲变化为每月9210(95%CI为3153~15268)例。结论:新冠病毒感染疫情防控降低了河南省手足口病发病水平。 展开更多
关键词 中断时间序列分析 自回归综合移动平均模型 新冠病毒感染疫情 手足口病 河南省
在线阅读 下载PDF
基于样本熵的港口集装箱吞吐量可预测性测度研究
6
作者 李楚楚 林琴 +1 位作者 冯宏祥 李松 《中国航海》 CSCD 北大核心 2024年第1期81-87,共7页
港口吞吐量历史时间序列数据具有较强的随机性,而不同特征的时间序列数据的预测精度差异较大,由此产生了时间序列数据可预测性的测度问题。学术界认为,这种可预测性可以用熵进行描述。文章采用样本熵表征测度我国20个港口集装箱吞吐量... 港口吞吐量历史时间序列数据具有较强的随机性,而不同特征的时间序列数据的预测精度差异较大,由此产生了时间序列数据可预测性的测度问题。学术界认为,这种可预测性可以用熵进行描述。文章采用样本熵表征测度我国20个港口集装箱吞吐量时间序列数据的复杂性,然后运用自回归综合移动平均模型(ARIMA)预测港口吞吐量。结果表明,样本熵与其预测精度之间的相关性较弱,ARIMA模型对于港口生命周期处于“成长”阶段的港口或者大型港口的预测精度更好。研究结论有助于理解熵和时间序列数据可预测性之间的关系。 展开更多
关键词 集装箱吞吐量 样本熵 自回归综合移动平均模型 生命周期
在线阅读 下载PDF
基于改进PSO-ARIMA模型的船舶纵摇角度预测 被引量:7
7
作者 王培良 张婷 肖英杰 《上海海事大学学报》 北大核心 2021年第1期39-43,共5页
针对自回归移动平均(auto regressive moving average,ARMA)模型在船舶纵摇角度预测时不具有普遍适用性问题,提出使用自回归综合移动平均(auto regressive integrated moving average,ARIMA)模型进行纵摇角度预测,并采用改进粒子群优化(... 针对自回归移动平均(auto regressive moving average,ARMA)模型在船舶纵摇角度预测时不具有普遍适用性问题,提出使用自回归综合移动平均(auto regressive integrated moving average,ARIMA)模型进行纵摇角度预测,并采用改进粒子群优化(particle swarm optimization,PSO)算法对模型定阶。对纵摇角度值序列数据进行平稳性检验和差分运算,确定ARIMA模型的适用性;采用具有针对性适应度评价函数的PSO算法进行模型定阶,并优化PSO算法的权重计算方法。通过仿真对比验证本文所提方法的科学性和有效性。仿真结果表明:采用改进PSO算法进行模型定阶的方法能够有效提升模型的预测精度,具有更好的预测效果。 展开更多
关键词 自回归综合移动平均(ARIMA)模型 粒子群优化(PSO)算法 船舶纵摇 纵摇预测
在线阅读 下载PDF
时间序列分析:历史回顾与未来展望 被引量:11
8
作者 程振源 《统计与决策》 北大核心 2002年第9期45-46,共2页
关键词 计量经济学 自回归综合移动平均模型 数据分析 时间序列分析
在线阅读 下载PDF
基于调和分析和ARIMA-SVR的组合潮汐预测模型 被引量:9
9
作者 刘娇 史国友 +4 位作者 朱凯歌 张加伟 李爽 陈作桓 王伟 《上海海事大学学报》 北大核心 2019年第3期93-99,共7页
为提高潮汐预测精度,解决单一调和分析预测精度不高的问题,提出一种基于调和分析和自回归综合移动平均-支持向量回归机(autoregressive integrated moving average support vector machine for regression,ARIMA-SVR)的组合潮汐预测模... 为提高潮汐预测精度,解决单一调和分析预测精度不高的问题,提出一种基于调和分析和自回归综合移动平均-支持向量回归机(autoregressive integrated moving average support vector machine for regression,ARIMA-SVR)的组合潮汐预测模型。潮汐分析中,潮汐可认为是由受引潮力影响的天文潮位和受环境因素影响的非线性水位的叠加。采用小波分析对潮汐样本数据进行去噪处理,使用调和分析法计算天文潮位,以调和分析法计算产生的残差作为非线性水位样本数据,并使用ARIMA-SVR模型进行潮高计算,最后将两部分的计算结果进行线性求和得到最终的潮汐预测值。利用美国旧金山港口实测潮汐数据进行预测仿真,结果表明,该组合模型解决了调和分析忽略非线性影响的问题,提高了潮汐预测准确率,可行且高效。 展开更多
关键词 潮汐预测 组合模型 调和分析法 支持向量回归机(SVR) 自回归综合移动平均(ARIMA)模型
在线阅读 下载PDF
基于快速小波变换的石英加速度计零偏预测 被引量:2
10
作者 陈大志 黄玉清 陈雪冬 《传感器与微系统》 CSCD 2016年第5期43-45,55,共4页
针对石英挠性加速度计零偏在贮存期间受外界环境影响发生漂移的补偿问题,研究了基于快速小波变换的加速度计零偏预测方法。通过Mallat算法从非平稳的零偏序列中提取出平稳的细节序列和非线性趋势序列,再根据序列的特点分别采用自回归移... 针对石英挠性加速度计零偏在贮存期间受外界环境影响发生漂移的补偿问题,研究了基于快速小波变换的加速度计零偏预测方法。通过Mallat算法从非平稳的零偏序列中提取出平稳的细节序列和非线性趋势序列,再根据序列的特点分别采用自回归移动平均(ARMA)模型和径向基函数(RBF)神经网络进行预测建模;最后利用小波重构公式得到零偏预测值。为验证所提方法的有效性,对某型加速度计2年贮存条件下的零偏标定值进行了建模仿真。结果显示:组合模型较单一自回归综合移动平均(ARIMA)模型和RBF模型预测精度分别提升45.5%和47.4%。 展开更多
关键词 石英挠性加速度计 零偏漂移 自回归综合移动平均模型 径向基函数模型
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部