期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Gender differences in the burden of near vision loss in China:An analysis based on GBD 2021 data
1
作者 LIU Yu ZHU Liping +4 位作者 LIN Yanhui WANG Yanbing XIONG Kun LI Xuhong YAN Wenguang 《中南大学学报(医学版)》 北大核心 2025年第6期1030-1041,共12页
Objective:Near vision loss(NVL)is one of the leading causes of visual impairment worldwide,exerting a profound impact on individual quality of life and socio-economic development.This study aims to analyze the burden ... Objective:Near vision loss(NVL)is one of the leading causes of visual impairment worldwide,exerting a profound impact on individual quality of life and socio-economic development.This study aims to analyze the burden of NVL in China by sex and age groups from 1990 to 2021 and to project trends over the next 15 years.Methods:Using data from the Global Burden of Disease(GBD)2021 database,we conducted descriptive analyses of NVL prevalence in China,calculated age-standardized prevalence rates(ASPR)and age-standardized disability-adjusted life years rates(ASDR)to compare burden differences between sexes and age groups,and applied an autoregressive integrated moving average(ARIMA)model to predict NVL trends for the next 15 years.The model selection was based on best-fit criteria to ensure reliable projections.Results:From 1990 to 2021,China’s ASPR of NVL rose from 10096.24/100000 to 15624.54/100000,and ASDR increased from 101.75/100000 to 158.75/100000.In 2021,ASPR(16551.70/100000)and ASDR(167.69/100000)were higher among females than males(14686.21/100000 and 149.76/100000,respectively).China ranked highest globally in both NVL cases and disability-adjusted life years(DALYs),with female burden significantly exceeding male burden.Projections indicated this trend and sex gap will persist until 2036.Compared with 1990,the prevalence cases and DALYs increased by 239.20%and 238.82%,respectively in 2021,with the highest burden among females and the 55−59 age group.The ARIMA model predicted continued increases in prevalence and DALYs by 2036,with females maintaining a higher burden than males.Conclusion:This study reveals a marked increase in the NVL burden in China and predicts continued growth in the coming years.Public health policies should prioritize NVL prevention and control,with special attention to women and middle-aged populations to mitigate long-term societal and health impacts. 展开更多
关键词 China near vision loss Global Burden of Disease database autoregressive integrated moving average model gender differences
在线阅读 下载PDF
多种残差补偿的贝叶斯网络下的短期交通预测 被引量:2
2
作者 王桐 杨光新 欧阳敏 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2024年第9期1810-1817,共8页
为了解决道路车流量的数据生成条件时变场景下的交通预测问题,本文建立道路交通控制与交通流预测数据之间的联系,提出一种基于多种残差补偿的贝叶斯网络的短期交通预测方法。提取城市中大规模多路口主干道车道及车辆信息构造多个平行的... 为了解决道路车流量的数据生成条件时变场景下的交通预测问题,本文建立道路交通控制与交通流预测数据之间的联系,提出一种基于多种残差补偿的贝叶斯网络的短期交通预测方法。提取城市中大规模多路口主干道车道及车辆信息构造多个平行的贝叶斯网络,使用贝叶斯关系及期望最大化算法进行短期交通预测。再通过数据自相关残差补偿、车辆换道和多路口连通性的线性残差补偿提高了预测的精度,解决了传统研究对相邻路口和换道导致的误差等因素处理能力不足的问题。仿真结果表明:使用贝叶斯网络预测交通流,并基于车辆行为的残差进行精度补偿,可以更准确地预测复杂的交通演化场景的短期交通流。 展开更多
关键词 大规模 交通预测 贝叶斯网络 混合高斯模型 EM算法 残差补偿 自回归滑动模型 LSTM网络 线性过程
在线阅读 下载PDF
基于流量预测的WSN入侵检测技术 被引量:3
3
作者 彭军 余强 何明星 《计算机应用与软件》 CSCD 2016年第2期310-313,共4页
在无线传感器网络(WSN),针对内部攻击严重威胁网络的安全和正常运行,如造成网络拥塞、能量的大量消耗等问题,提出基于流量预测的入侵检测技术。该技术首先利用自回归滑动平均模型ARMA(Autoregressive Moving Average)为节点建立ARMA(2,1... 在无线传感器网络(WSN),针对内部攻击严重威胁网络的安全和正常运行,如造成网络拥塞、能量的大量消耗等问题,提出基于流量预测的入侵检测技术。该技术首先利用自回归滑动平均模型ARMA(Autoregressive Moving Average)为节点建立ARMA(2,1)流量预测模型,然后利用预测的流量值来得到通过节点的流量接收率范围,最后通过比较实际流量接收率是否超出预测范围来达到检测的效果。实验结果表明,和单独使用ARMA模型相比,在相同报文重放率条件下,采用该技术有更高的检测率和更低的误报警率,同时减少了网络节点的能量消耗。 展开更多
关键词 无线传感器网络 内部攻击 入侵检测 自回归滑动模型 流量接收率
在线阅读 下载PDF
A data-driven method to predict future bottlenecks in a remanufacturing system with multi-variant uncertainties 被引量:2
4
作者 XUE Zheng LI Tao +2 位作者 PENG Shi-tong ZHANG Chao-yong ZHANG Hong-chao 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第1期129-145,共17页
The remanufacturing system is remolding the manufacturing industry by bringing scrapped products back to such a condition that reintegrated performance is just as good as new.The remanufacturing environment is feature... The remanufacturing system is remolding the manufacturing industry by bringing scrapped products back to such a condition that reintegrated performance is just as good as new.The remanufacturing environment is featured by a far deeper level of uncertainty than new manufacturing,such as probabilistic routing files,and highly variable processing time.The stochastic disturbances result in the production bottlenecks,which constrain the productivity of the job shop.The uncertainties in the remanufacturing process cause the bottlenecks to shift when the workshop is processing.Considering this outstanding problem,many researchers try to optimize the production process to mitigate dynamic bottlenecks toward a balanced state.This paper proposes a data-driven method to predict bottlenecks in the remanufacturing system with multi-variant uncertainties.Firstly,discrete event simulation technology is applied to establish a simulation model of the remanufacturing production line and calculate the bottleneck index to identify bottlenecks.Secondly,a data-driven method,auto-regressive moving average(ARMA)model is employed to predict the bottlenecks in the system based on real-time data captured by the Arena software.Finally,the proposed prediction method is verified on real data from the automobile engine remanufacturing production line. 展开更多
关键词 bottleneck identification dynamic bottleneck remanufacturing system auto-regressive moving average model
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部