期刊文献+
共找到379篇文章
< 1 2 19 >
每页显示 20 50 100
双级联合投影包络内嵌堆栈自动编码器
1
作者 李勇明 朱立志 +2 位作者 王品 马洁 周传艳 《仪器仪表学报》 北大核心 2025年第2期116-131,共16页
深度堆栈自动编码器作为一种代表性的深度网络,已被广泛应用在数据科学、模式识别等领域。现有的深度堆栈自动编码器均针对原样本个体进行深度特征变换,忽略了样本之间的关联结构信息,导致其深度特征的质量往往不尽如人意。为了解决这... 深度堆栈自动编码器作为一种代表性的深度网络,已被广泛应用在数据科学、模式识别等领域。现有的深度堆栈自动编码器均针对原样本个体进行深度特征变换,忽略了样本之间的关联结构信息,导致其深度特征的质量往往不尽如人意。为了解决这一问题,提出一种新的深度堆栈自动编码器网络-双级联合投影包络内嵌堆栈自动编码器。与现有的深度堆栈自动编码器本质上不同的是,双级联合投影包络内嵌堆栈自动编码器针对样本间关联信息而非样本个体本身进行深度特征变换。该模型主要包括两部分:双级联合投影包络模块和内嵌式堆栈自动编码器。在双级联合投影包络模块中,流形样本对包络子模块用于提取原样本间局部关联信息,重构生成第1层包络样本;保持降维式聚类子模块用于提取样本的全局关联信息,重构生成第2层包络样本。双级间一致性保持模块用于优化第2层包络样本的表征能力。然后,在这2层包络样本上分别训练2个内嵌式堆栈自动编码器,获得2组深度特征。组织了4组实验,包括消融实验、算法比较、参数影响分析以及复杂度分析。实验结果表明,双级联合投影包络内嵌堆栈自动编码器提取的深度特征具有较高且稳定的质量。 展开更多
关键词 内嵌堆栈自动编码器 包络学习 双级 包络样本 聚类 域适应
在线阅读 下载PDF
基于鲁棒变分自动编码器的时序异常检测 被引量:1
2
作者 冯志鹏 赵旭俊 《计算机工程与设计》 北大核心 2025年第2期376-383,共8页
针对变分自动编码器在时序异常检测中鲁棒性低的问题,提出一种鲁棒变分自动编码器异常检测算法。通过对时间信息进行编码并融合在变分自动编码器的隐藏层中,有效学习不同时间窗口间的周期性模式;添加Dropout层以防止过拟合,增强局部特... 针对变分自动编码器在时序异常检测中鲁棒性低的问题,提出一种鲁棒变分自动编码器异常检测算法。通过对时间信息进行编码并融合在变分自动编码器的隐藏层中,有效学习不同时间窗口间的周期性模式;添加Dropout层以防止过拟合,增强局部特征的学习,增强时序关系在异常检测中的作用。提出一种损失函数来识别异常时序数据,通过重构误差与阈值的比较筛选异常。利用交替方向乘子法对异常时序进行验证,提高鲁棒性。在4个真实数据集上与4种基准方法相比,该算法在异常样本上的精度和F1分数均有显著提升。 展开更多
关键词 时间序列 自动编码器 神经网络 鲁棒 损失函数 重构误差 异常检测
在线阅读 下载PDF
改进注意力混合自动编码器视频异常检测研究 被引量:1
3
作者 陈兆波 张琳 马晓轩 《计算机工程与科学》 北大核心 2025年第1期130-139,共10页
视频异常检测是计算机视觉领域的重要研究内容之一,广泛应用于交通、公共安全等领域。然而,目前视频异常检测领域存在单个预测模型易受噪声干扰、单个重构模型存在泛化异常等问题。为了解决这些问题,提出了一种结合重构和预测模型的视... 视频异常检测是计算机视觉领域的重要研究内容之一,广泛应用于交通、公共安全等领域。然而,目前视频异常检测领域存在单个预测模型易受噪声干扰、单个重构模型存在泛化异常等问题。为了解决这些问题,提出了一种结合重构和预测模型的视频异常检测方法。在正常光流数据上训练具有注意力机制和内存增强模块的重构网络,再将重构后的光流和原始视频帧同时输入未来帧预测网络中,以重构光流为条件辅助帧预测网络更好地生成未来帧。为了提取更有效的特征,提出了一种残差卷积注意力模块SRCAM以促进重构和预测网络在全局和局部层面有效学习潜在空间的特征表示,从而增强模型对视频中异常事件的检测能力,提高模型的鲁棒性。通过在UCSD Ped2和CUHK Avenue这2个常用的视频异常检测数据集上进行的广泛的实验评估,表明了所提方法的有效性。 展开更多
关键词 视频异常检测 注意力机制 流重构 帧预测 自动编码器
在线阅读 下载PDF
基于多通道低秩自动编码器的组织病理图像分类方法
4
作者 周国华 徐亦卿 +3 位作者 申燕萍 韩少勇 顾晓清 殷新春 《贵州师范大学学报(自然科学版)》 北大核心 2025年第5期54-65,共12页
组织病理图像的识别和分类在疾病诊断中发挥着极其重要的作用。近年来随着智慧医疗的蓬勃发展,基于人工智能的医学图像分类技术可以辅助病理学家提高诊断速度、降低误诊率。因此提出了一种基于多通道低秩自动编码器(Multi-channel low r... 组织病理图像的识别和分类在疾病诊断中发挥着极其重要的作用。近年来随着智慧医疗的蓬勃发展,基于人工智能的医学图像分类技术可以辅助病理学家提高诊断速度、降低误诊率。因此提出了一种基于多通道低秩自动编码器(Multi-channel low rank autoencoder,MLRA)用于组织病理图像分类。首先,将从三原色光模式提取多通道特征投影到具有低秩约束的共享潜在子空间,得到多通道特征的共享潜在表示。共享潜在表示分成无噪声的低秩表示和噪声数据两部分,低秩表示部分用于挖掘多通道特征的结构信息,而噪声数据则在潜在子空间被去除。然后,利用训练样本的监督信息将共享潜在表示投影到标签空间,引入松弛标签和ε-dragging技术,并对子类松弛标签矩阵施加低秩约束保证同类别标签矩阵具有一致的低秩性,得到判别性强的投影矩阵。在ADL和BreakHis数据集上的实验结果表明,提出的MLRA方法有效提高组织病理图像的分类精度且鲁棒性强。 展开更多
关键词 多通道 自动编码器 低秩 组织病理图像 分类
在线阅读 下载PDF
轴承故障信号深度自动编码器诊断有效性测试
5
作者 劳胜领 董会锦 +1 位作者 修素朴 李生 《机械设计与制造》 北大核心 2025年第5期149-152,158,共5页
轴承作为机械传动中不可缺少的部件,其故障识别效率直接影响到传动设备的作业稳定性。为了提高轴承智能故障诊断能力,通过充足源域数据来完成深度自动编码器训练,采用不同故障测试该诊断方法的有效性。研究结果表明:因为受到噪声因素干... 轴承作为机械传动中不可缺少的部件,其故障识别效率直接影响到传动设备的作业稳定性。为了提高轴承智能故障诊断能力,通过充足源域数据来完成深度自动编码器训练,采用不同故障测试该诊断方法的有效性。研究结果表明:因为受到噪声因素干扰,导致源域与目标域样本都出现了不同的分布特征。测试获得的诊断准确率均值为89.42%。本次设置的目标域内只包含了一个训练样本,按照以上方法同样可以实现对各类机械设备迁移诊断。本迁移模型可以达到89.51%的诊断准确率,相对其他迁移模型获得了更高准确率。本次设计的迁移模型标准差只有0.624,比参考模型更小,表现出了优异稳定性。该研究对提高机械传动的稳定性具有很好的理论支撑价值,易于推广应用。 展开更多
关键词 提升深度自动编码器 轴承故障 迁移诊断 准确率
在线阅读 下载PDF
融合深度自动编码器的联邦学习恶意节点检测方案
6
作者 张晓琴 曹泽宇 +1 位作者 陆艳军 金西兴 《重庆理工大学学报(自然科学)》 北大核心 2025年第5期139-148,共10页
联邦学习使多个客户端节点能够在保护数据隐私的基础上协作训练全局模型,但中心服务器无法控制各节点的行为,恶意节点可能会上传错误的梯度更新,损害全局模型。针对上述问题,提出了一个融合深度自动编码器的联邦学习恶意节点检测方案Fed... 联邦学习使多个客户端节点能够在保护数据隐私的基础上协作训练全局模型,但中心服务器无法控制各节点的行为,恶意节点可能会上传错误的梯度更新,损害全局模型。针对上述问题,提出了一个融合深度自动编码器的联邦学习恶意节点检测方案FedDA,以提高联邦学习系统在面对恶意行为时的防御能力。该方案通过分析本地模型输出层的梯度信息识别恶意节点,结合深度自动编码器进行数据特征提取、数据解耦和数据降维;基于马氏距离构建联邦聚合算法,抑制恶意节点产生的破坏。实验结果表明,FedDA在MNIST和CIFAR-10数据集上的表现优于Mkrum等防御方法,防御成功率最高提升可达19.9%。同时,FedDA与FedAvg的全局模型准确率接近。FedDA在有效防范恶意行为的同时,保持了全局模型的训练效果,适用于广泛的联邦学习场景。 展开更多
关键词 联邦学习 深度自动编码器 马氏距离 检测方案 聚合算法
在线阅读 下载PDF
基于图自动编码器和梯度决策树集成的lncRNA-疾病关联预测方法
7
作者 李明强 李然 +2 位作者 刘琪 杜晶颐 李慧慧 《现代电子技术》 北大核心 2025年第12期61-66,共6页
长链非编码RNA(lncRNA)的异常表达与人类疾病的发生发展密切相关。采用计算方法预测lncRNA与疾病的潜在关联可显著降低生物学实验验证的成本。针对现有机器学习方法易受噪声干扰且预测精度不足的问题,设计一种新型lncRNA-疾病关联预测模... 长链非编码RNA(lncRNA)的异常表达与人类疾病的发生发展密切相关。采用计算方法预测lncRNA与疾病的潜在关联可显著降低生物学实验验证的成本。针对现有机器学习方法易受噪声干扰且预测精度不足的问题,设计一种新型lncRNA-疾病关联预测模型LDA-GADT。首先,通过计算lncRNA和疾病的高斯关联核相似性对lncRNA功能相似性和疾病语义相似性进行补充,从而得到lncRNA和疾病的综合相似度矩阵;然后,使用图自动编码器学习lncRNA-疾病对的特征表示;最后,使用基于梯度的决策树集成算法来预测lncRNA与疾病之间的关联关系。五折交叉验证实验结果表明,在lncRNA Disease数据库上,LDA-GADT模型的AUC值为0.9424,较LDNFSGB、SDLDA、RWSF-BLP和LDAenDL模型分别提升了8.46%、6.5%、1.28%和3.14%;在MNDR数据库上的AUC值为0.982 2,较上述对比模型分别提升了4.76%、2.62%、1.93%和1.14%。此外,通过对肺癌和乳腺癌进行案例分析,进一步验证了所提模型的准确性和有效性。 展开更多
关键词 lncRNA-疾病关联 关联预测 高斯关联核相似度 自动编码器 梯度下降 决策树 特征提取
在线阅读 下载PDF
基于改进型降噪自动编码器的家用负荷辨识方法
8
作者 刘宣 刘兴奇 +3 位作者 唐悦 窦健 巫钟兴 倪斌 《电测与仪表》 北大核心 2024年第11期68-75,90,共9页
家用负荷辨识准确性受数据采样速率制约显著,过高的采样速率能够解决数据问题,但也带来成本提高、系统设计复杂等问题。基于此,提出了一种仅依赖常规采样速率有功功率量测的非侵入式负荷辨识方法,所提方法对传统的降噪自动编码器算法滑... 家用负荷辨识准确性受数据采样速率制约显著,过高的采样速率能够解决数据问题,但也带来成本提高、系统设计复杂等问题。基于此,提出了一种仅依赖常规采样速率有功功率量测的非侵入式负荷辨识方法,所提方法对传统的降噪自动编码器算法滑动窗的重叠部分计算进行了改进,使用中值滤波器对重叠窗的数据结果进行处理,能够较好地克服辨识结果偏高的问题。通过在REDD(reference energy disaggregation dataset)和TraceBase两个家庭用电数据集开展测试,证明了所提方法在辨识设备功率和判断设备所处状态两个方面都具有较好的效果,且各项指标均好于经典的基于因子隐马尔可夫模型(factorial hidden Markov model,FHMM)算法。另外所提算法的通用性较好,能够对不同型号、品牌的同种设备进行有效辨识,具有较好的实用价值。 展开更多
关键词 负荷辨识 降噪自动编码器 REDD数据集 TraceBase数据集 机器学习
在线阅读 下载PDF
基于AGRU自动编码器的无监督刀具异常检测
9
作者 雷文平 闫灏 +2 位作者 李沁远 李岩 郑鹏 《机床与液压》 北大核心 2024年第22期30-37,共8页
目前,大多加工企业对数控机床刀具的监测往往通过人工经验或定期停机检查,这不仅降低了生产效率,还导致刀具加工过程存在明显的数据不平衡问题。为此,提出一种融合Attention机制的门控循环单元(GRU)自动编码器模型用于刀具异常检测。该... 目前,大多加工企业对数控机床刀具的监测往往通过人工经验或定期停机检查,这不仅降低了生产效率,还导致刀具加工过程存在明显的数据不平衡问题。为此,提出一种融合Attention机制的门控循环单元(GRU)自动编码器模型用于刀具异常检测。该模型使用门控循环单元搭建编码器和解码器,提取时序数据的深层特征。在编码器重构部分融入注意力机制,实现对关键特征的选择,从而提高模型效率。此外,提出结合长时评价窗机制的异常检测模型,以进一步增强检测能力和稳定性。最后,通过在实验所得数据集和公开数据集上进行实验,证明该方法的有效性和可行性。结果表明:该方法在不同数据集上的准确率均超过98%;与刀具状态监测领域其他方法相比,该方法无需进行大量实验来获取刀具全生命周期数据和磨损标签数据,便于刀具检测系统的开发和应用。 展开更多
关键词 刀具异常监测 自动编码器 时间序列 注意力机制
在线阅读 下载PDF
基于自动编码器降维的Cox神经网络扩展模型在肺腺癌组学数据中的应用 被引量:1
10
作者 张永超 兰宁 +3 位作者 李淼 张云飞 赵晋芳 罗天娥 《中国卫生统计》 CSCD 北大核心 2024年第1期156-160,共5页
目的 在自动编码器对肺腺癌基因表达组学数据进行降维的基础上,构建Cox的神经网络扩展模型,从而对肺腺癌患者预后进行预测。方法 首先通过两种无监督学习方法:自动编码器和主成分分析分别对肺腺癌的基因表达数据进行降维,然后构建Cox-n... 目的 在自动编码器对肺腺癌基因表达组学数据进行降维的基础上,构建Cox的神经网络扩展模型,从而对肺腺癌患者预后进行预测。方法 首先通过两种无监督学习方法:自动编码器和主成分分析分别对肺腺癌的基因表达数据进行降维,然后构建Cox-nnet模型,并与DeepSurv模型进行比较,从中选择预测性能较好的方法来识别肺腺癌的高低危患者。结果 在TCGA与GEO两个数据集中,基于自动编码器降维后的Cox-nnet模型均有较好的一致性指数与AUC值,且高低预后两组患者的生存率都具有统计学差异。结论 自动编码器比主成分分析更适用于基因表达数据的无监督降维,且经自动编码器降维后的Cox-nnet模型拥有较好的预测性能,可以明显地区分肺腺癌的高低危患者,为肺腺癌的预后研究提供科学依据。 展开更多
关键词 肺腺癌 主成分分析 自动编码器 Cox-nnet 预后预测
在线阅读 下载PDF
基于自动编码器组合的深度学习优化方法 被引量:43
11
作者 邓俊锋 张晓龙 《计算机应用》 CSCD 北大核心 2016年第3期697-702,共6页
为了提高自动编码器算法的学习精度,更进一步降低分类任务的分类错误率,提出一种组合稀疏自动编码器(SAE)和边缘降噪自动编码器(m DAE)从而形成稀疏边缘降噪自动编码器(Sm DAE)的方法,将稀疏自动编码器和边缘降噪自动编码器的限制条件... 为了提高自动编码器算法的学习精度,更进一步降低分类任务的分类错误率,提出一种组合稀疏自动编码器(SAE)和边缘降噪自动编码器(m DAE)从而形成稀疏边缘降噪自动编码器(Sm DAE)的方法,将稀疏自动编码器和边缘降噪自动编码器的限制条件加载到一个自动编码器(AE)之上,使得这个自动编码器同时具有稀疏自动编码器的稀疏性约束条件和边缘降噪自动编码器的边缘降噪约束条件,提高自动编码器算法的学习能力。实验表明,稀疏边缘降噪自动编码器在多个分类任务上的学习精度都高于稀疏自动编码器和边缘降噪自动编码器的分类效果;与卷积神经网络(CNN)的对比实验也表明融入了边缘降噪限制条件,而且更加鲁棒的Sm DAE模型的分类精度比CNN还要好。 展开更多
关键词 深度学习 自动编码器 稀疏自动编码器 降噪自动编码器 卷积神经网络
在线阅读 下载PDF
基于掩膜自动编码器的对抗对比蒸馏算法 被引量:1
12
作者 张点 董云卫 《计算机学报》 EI CAS CSCD 北大核心 2024年第10期2274-2288,共15页
随着人工智能的不断发展,神经网络对不同领域的任务都表现出了优异的性能.然而,对抗样本的存在对神经网络在安全相关领域中的应用提出了挑战.为了改善对抗训练耗时和对抗样本缺乏多样性的问题,本文提出一种使用改进掩膜自动编码器训练... 随着人工智能的不断发展,神经网络对不同领域的任务都表现出了优异的性能.然而,对抗样本的存在对神经网络在安全相关领域中的应用提出了挑战.为了改善对抗训练耗时和对抗样本缺乏多样性的问题,本文提出一种使用改进掩膜自动编码器训练教师网络的对比蒸馏算法抵御对抗攻击.首先,为了减弱教师模型对图像全局特征的依赖,教师模型在改进的掩膜自动编码器中学习如何根据可见子块推理遮挡子块的特征.然后,为了减弱对抗干扰的影响,本文采用知识蒸馏和对比学习的方法提升目标模型的对抗鲁棒性,通过知识蒸馏转移教师模型的特征到学生模型减少模型对全局特征的依赖,通过对比学习提升学生模型对图像之间细节特征的识别能力.最后,本文采用标签信息对分类头进行调节确保识别准确率.在ResNet50和WideResNet50中进行的实验表明,CIFAR-10中对抗准确率平均提升11.50%;CIFAR-100中对抗准确率平均提升6.35%.实验结果证明基于掩膜自动编码器的对比蒸馏算法能够通过只生成一次对抗样本减弱对抗干扰的影响,并通过随机掩膜构建多样本视角提升样本多样性,增强神经网络对抗鲁棒性. 展开更多
关键词 神经网络 对抗样本 对抗训练 掩膜自动编码器 对比蒸馏 对抗鲁棒性
在线阅读 下载PDF
深层图注意力对抗变分自动编码器
13
作者 翁自强 张维玉 孙旭 《计算机应用与软件》 北大核心 2024年第9期156-165,共10页
现有的图自动编码器忽视了图邻居节点的差异和图潜在的数据分布。为了提高图自动编码器嵌入能力,提出图注意力对抗变分自动编码器(AAVGA-d),该方法将注意力引入编码器,并在嵌入训练中使用对抗机制。图注意力编码器实现了对邻居节点权重... 现有的图自动编码器忽视了图邻居节点的差异和图潜在的数据分布。为了提高图自动编码器嵌入能力,提出图注意力对抗变分自动编码器(AAVGA-d),该方法将注意力引入编码器,并在嵌入训练中使用对抗机制。图注意力编码器实现了对邻居节点权重的自适应分配,对抗正则化使编码器生成的嵌入向量分布接近数据的真实分布。为了加深图注意力层数,设计一种针对注意力网络的随机边删除技术(RDEdge),减少了层数过深引起的过平滑信息丢失。实验结果表明,AAVGA-d的图嵌入能力与目前流行的图自动编码器相比具有竞争优势。 展开更多
关键词 图注意力 过平滑 自动编码器 对抗
在线阅读 下载PDF
基于分类自动编码器的单细胞RNA测序数据降维方法scAC
14
作者 唐勇轩 梁潇 骆嘉伟 《南京大学学报(自然科学版)》 CSCD 北大核心 2024年第6期920-929,共10页
单细胞RNA测序(Single-cell RNA sequencing,scRNA-seq)技术使研究人员可以在单细胞分辨率下测量转录组范围内的基因表达,并逐渐改变了人们对细胞生物学和人类疾病的认识.单细胞测序数据的高变异性、高稀疏性和高维度性严重阻碍了其下... 单细胞RNA测序(Single-cell RNA sequencing,scRNA-seq)技术使研究人员可以在单细胞分辨率下测量转录组范围内的基因表达,并逐渐改变了人们对细胞生物学和人类疾病的认识.单细胞测序数据的高变异性、高稀疏性和高维度性严重阻碍了其下游分析,降维对于高维scRNA-seq数据的可视化和下游分析至关重要.然而,现有的单细胞降维算法没有充分考虑细胞之间的关系,也没有联合优化降维和聚类任务.为了克服这些局限性,面向单细胞RNA测序数据,以机器学习技术为手段,进行了基于自动编码器的降维算法研究.现有的降维算法大多没有使用伪标签来监督编码器的训练过程,导致降维数据的同时丢失了细胞间信号,提出了基于分类自动编码器的细胞降维算法.该算法结合了分类自动编码器和深度嵌入聚类来生成基因表达矩阵的低维表示.实验结果表明,与其他六种基准测试算法相比,该算法在一系列下游scRNA-seq分析任务中显示了具有竞争力的性能. 展开更多
关键词 分类自动编码器 细胞降维 深度嵌入聚类 单细胞RNA测序 机器学习
在线阅读 下载PDF
融减自动编码器 被引量:2
15
作者 孙宇 魏本征 +2 位作者 刘川 张魁星 丛金玉 《计算机科学与探索》 CSCD 北大核心 2021年第8期1526-1533,共8页
自动编码器(AE)是深度学习领域中一种结构简单且应用广泛的无监督特征提取算法。在图像特征提取方面,现有自动编码器普遍存在特征提取不充分、模型参数量较多等问题。针对上述问题,提出了一种用于图像特征提取的融减自动编码器(MRAE)。... 自动编码器(AE)是深度学习领域中一种结构简单且应用广泛的无监督特征提取算法。在图像特征提取方面,现有自动编码器普遍存在特征提取不充分、模型参数量较多等问题。针对上述问题,提出了一种用于图像特征提取的融减自动编码器(MRAE)。首先,在该算法中提出“融减网络结构”,该结构在编码器中通过特征交叉传递实现了特征融合,在解码器中通过优化解码结构降低了特征损失并减少了模型参数量;其次,设计一种联合重构损失函数,该函数通过计算特征层之间的重构损失,在加强特征层之间联系的同时可有效避免模型早熟。实验结果表明:在肺部CT图像数据集上,基于融减自动编码器所提取的特征使用支持向量机(SVM)、K-means和分类回归决策树(CART)等分类器,肺炎筛查准确率均在97%以上;在CvD数据集上,基于融减自动编码器所提取的特征使用全连接分类的准确率均在90%以上。 展开更多
关键词 自动编码器(AE) 特征提取 融减自动编码器(MRAE) 融减网络结构 联合重构损失函数
在线阅读 下载PDF
基于低秩自动编码器及高光谱图像的茶叶品种鉴别 被引量:14
16
作者 孙俊 靳海涛 +3 位作者 武小红 陆虎 沈继锋 戴春霞 《农业机械学报》 EI CAS CSCD 北大核心 2018年第8期316-323,共8页
提出一种基于低秩自动编码器及高光谱图像技术的茶叶品种鉴别方法。应用高光谱成像系统采集5个品种的茶叶样本高光谱图像数据,利用ENVI软件确定高光谱图像的感兴趣区域(ROI),并提取茶叶样本在ROI的平均光谱作为该样本的原始光谱数据。... 提出一种基于低秩自动编码器及高光谱图像技术的茶叶品种鉴别方法。应用高光谱成像系统采集5个品种的茶叶样本高光谱图像数据,利用ENVI软件确定高光谱图像的感兴趣区域(ROI),并提取茶叶样本在ROI的平均光谱作为该样本的原始光谱数据。由于高光谱信息量大、冗余性强且存在噪声,运用自动编码器和低秩矩阵恢复结合的低秩自动编码器(LR-SAE)对原始光谱数据进行降维,在自动编码器降维基础上加入去噪处理,提取鲁棒判别特征。在此基础上应用支持向量机(SVM)和Softmax分类算法对降维后的茶叶样本高光谱数据分类。通过5折交叉试验验证,LR-SAE-SVM模型的预测集准确率达到99.37%,SAE-SVM模型的预测集准确率为98.82%;LR-SAE-Softmax模型的预测集准确率达99.04%,SAE-Softmax模型的预测集准确率为97.99%。研究结果表明,相较于未进行去噪处理的传统自动编码器,LR-SAE降维之后的分类建模效果有所提升,将其应用于茶叶品种鉴别是可行、高效的。 展开更多
关键词 茶叶 品种鉴别 自动编码器 低秩矩阵恢复 高光谱 降维
在线阅读 下载PDF
堆叠自动编码器与S变换相结合的电缆早期故障识别方法 被引量:35
17
作者 汪颖 卢宏 +2 位作者 杨晓梅 肖先勇 张文海 《电力自动化设备》 EI CSCD 北大核心 2018年第8期117-124,共8页
将深度学习概念应用到电缆早期故障识别中,提出结合S变换与堆叠自动编码器(SAE)的电缆早期故障识别方法。通过对故障相电流进行S变换,将获得的S变换模时频矩阵分为低、中和高频段。求取对应频段的能量熵和奇异熵等特征量,并组成特征向量... 将深度学习概念应用到电缆早期故障识别中,提出结合S变换与堆叠自动编码器(SAE)的电缆早期故障识别方法。通过对故障相电流进行S变换,将获得的S变换模时频矩阵分为低、中和高频段。求取对应频段的能量熵和奇异熵等特征量,并组成特征向量后,将时频域特征向量作为SAE网络的输入,经过预训练和参数微调,得到最优训练参数。利用构建好的网络从输入数据中挖掘有用信息,从大量扰动中识别电缆早期故障。仿真结果表明,与传统模式识别方法相比,所提方法的精度更高。 展开更多
关键词 电缆 电缆早期故障 S变换 奇异熵 能量熵 深度学习 堆叠自动编码器
在线阅读 下载PDF
基于堆叠降噪自动编码器的胶囊缺陷检测方法 被引量:16
18
作者 王宪保 何文秀 +2 位作者 王辛刚 姚明海 钱沄涛 《计算机科学》 CSCD 北大核心 2016年第2期64-67,共4页
目前医用胶囊生产过程中的缺陷检测主要由人工完成,费时费力,容易受主观因素的影响。提出一种基于堆叠降噪自动编码器的胶囊表面缺陷检测方法,该方法首先建立深度自动编码器网络,并根据缺陷样本进行降噪训练,获取网络的初始权值;然后通... 目前医用胶囊生产过程中的缺陷检测主要由人工完成,费时费力,容易受主观因素的影响。提出一种基于堆叠降噪自动编码器的胶囊表面缺陷检测方法,该方法首先建立深度自动编码器网络,并根据缺陷样本进行降噪训练,获取网络的初始权值;然后通过BP算法进行微调,得到训练样本到无缺陷模板之间的映射关系;最后利用重构图像与缺陷图像之间的对比关系,实现测试样本的缺陷检测。实验表明,堆叠降噪自动编码器较好地建立了上述映射关系,能快速、准确地进行缺陷检测,对噪声具有很强的鲁棒性和稳定性。 展开更多
关键词 堆叠降噪自动编码器 缺陷检测 深度学习
在线阅读 下载PDF
优化堆叠降噪自动编码器滚动轴承故障诊断 被引量:23
19
作者 余萍 曹洁 《太阳能学报》 EI CAS CSCD 北大核心 2021年第11期307-314,共8页
针对深度堆叠降噪自动编码器(SDAE)网络超参数采用经验枚举获得时存在的泛化能力较弱,且选参过程与设计人员经验有关,效率低等问题,利用新设计的人工变性天牛算法(ATLA)对SDAE网络超参数进行自适应选取,并确定网络结构,训练得到故障状... 针对深度堆叠降噪自动编码器(SDAE)网络超参数采用经验枚举获得时存在的泛化能力较弱,且选参过程与设计人员经验有关,效率低等问题,利用新设计的人工变性天牛算法(ATLA)对SDAE网络超参数进行自适应选取,并确定网络结构,训练得到故障状态的特征表示,最后输入到Softmax分类层进行故障检测,并确定故障类别。通过变工况下滚动轴承故障诊断仿真实验验证,该文所提出的ATLA-SDAE诊断方法在泛化性能、故障识别率等方面均优于BP神经网络、支持向量机(SVM)以及卷积神经网络(CNN)方法,能够从海量数据中自适应地提取更深层次的故障特征,可避免手动设计和提取故障特征的繁琐过程,更有利于提高故障分类的精度和诊断效率。 展开更多
关键词 风电机组 堆叠降噪自动编码器 超参数 人工变性天牛算法 故障诊断 滚动轴承
在线阅读 下载PDF
YUV空间中基于稀疏自动编码器的无监督特征学习 被引量:17
20
作者 李祖贺 樊养余 王凤琴 《电子与信息学报》 EI CSCD 北大核心 2016年第1期29-37,共9页
现有无监督特征学习算法通常在RGB色彩空间进行特征提取,而图像和视频压缩编码标准则广泛采用YUV色彩空间。为了利用人类视觉特性和避免色彩空间转换所消耗的计算量,该文提出一种基于稀疏自动编码器在YUV色彩空间进行无监督特征学习的... 现有无监督特征学习算法通常在RGB色彩空间进行特征提取,而图像和视频压缩编码标准则广泛采用YUV色彩空间。为了利用人类视觉特性和避免色彩空间转换所消耗的计算量,该文提出一种基于稀疏自动编码器在YUV色彩空间进行无监督特征学习的方法。首先在YUV空间随机采集图像子块并进行白化处理,然后利用稀疏自动编码器进行无监督局部特征学习。在预处理阶段,针对YUV空间亮度和色度通道相互独立的特性,提出一种将亮度和色度进行分离的白化措施。最后用学习到的局部特征在大尺寸图像上进行卷积操作从而获得全局特征,并送入图像分类系统进行性能测试。实验结果表明:只要对亮度分量进行适当的白化处理,在YUV空间中的无监督特征学习就能够获得相当于甚至优于RGB空间的彩色图像分类性能。 展开更多
关键词 图像分类 无监督特征学习 稀疏自动编码器 卷积神经网络 深度学习
在线阅读 下载PDF
上一页 1 2 19 下一页 到第
使用帮助 返回顶部