An autonomous underwater vehicle (AUV) must use an algorithm to plan its path to distant, mobile offshore objects. Because of the uneven distribution of obstacles in the real world, the efficiency of the algorithm dec...An autonomous underwater vehicle (AUV) must use an algorithm to plan its path to distant, mobile offshore objects. Because of the uneven distribution of obstacles in the real world, the efficiency of the algorithm decreases if the global environment is represented by regular grids with all of them at the highest resolution. The framed quadtree data structure is able to more efficiently represent the environment. When planning the path, the dynamic object is expressed instead as several static objects which are used by the path planner to update the path. By taking account of the characteristics of the framed quadtree, objects can be projected on the frame nodes to increase the precision of the path. Analysis and simulations showed the proposed planner could increase efficiency while improving the ability of the AUV to follow an object.展开更多
This paper studies the algorithm of the adaptive grid and fuzzy interacting multiple model (AGFIMM) for maneuvering target tracking, while focusing on the problems of the fixed structure multiple model (FSMM) algo...This paper studies the algorithm of the adaptive grid and fuzzy interacting multiple model (AGFIMM) for maneuvering target tracking, while focusing on the problems of the fixed structure multiple model (FSMM) algorithm's cost-efficiency ratio being not high and the Markov transition probability of the interacting multiple model (IMM) algorithm being difficult to determine exactly. This algorithm realizes the adaptive model set by adaptive grid adjustment, and obtains each model matching degree in the model set by fuzzy logic inference. The simulation results show that the AGFIMM algorithm can effectively improve the accuracy and cost-efficiency ratio of the multiple model algorithm, and as a result is suitable for enineering apolications.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No. 60875071
文摘An autonomous underwater vehicle (AUV) must use an algorithm to plan its path to distant, mobile offshore objects. Because of the uneven distribution of obstacles in the real world, the efficiency of the algorithm decreases if the global environment is represented by regular grids with all of them at the highest resolution. The framed quadtree data structure is able to more efficiently represent the environment. When planning the path, the dynamic object is expressed instead as several static objects which are used by the path planner to update the path. By taking account of the characteristics of the framed quadtree, objects can be projected on the frame nodes to increase the precision of the path. Analysis and simulations showed the proposed planner could increase efficiency while improving the ability of the AUV to follow an object.
基金Foundation item: Supported by the National Nature Science Foundation of China (No. 61074053, 61374114) and the Applied Basic Research Program of Ministry of Transport of China (No. 2011-329-225 -390).
文摘This paper studies the algorithm of the adaptive grid and fuzzy interacting multiple model (AGFIMM) for maneuvering target tracking, while focusing on the problems of the fixed structure multiple model (FSMM) algorithm's cost-efficiency ratio being not high and the Markov transition probability of the interacting multiple model (IMM) algorithm being difficult to determine exactly. This algorithm realizes the adaptive model set by adaptive grid adjustment, and obtains each model matching degree in the model set by fuzzy logic inference. The simulation results show that the AGFIMM algorithm can effectively improve the accuracy and cost-efficiency ratio of the multiple model algorithm, and as a result is suitable for enineering apolications.