一个迭代函数系—IFS(Iterated Function System ) 由一组压缩映射组成, 它描述了研究对象“整体”和“局部”之间的变换构成关系.对于图像来讲,IFS描述了图像“整体”和“局部”之间的空间变换关系,因此,IFS可以视为图像的空间结构模型...一个迭代函数系—IFS(Iterated Function System ) 由一组压缩映射组成, 它描述了研究对象“整体”和“局部”之间的变换构成关系.对于图像来讲,IFS描述了图像“整体”和“局部”之间的空间变换关系,因此,IFS可以视为图像的空间结构模型,而与IFS有关的参数可以视为反映图像空间结构的特征.IFS的提出起源于分形图像压缩的研究,因此IFS与分形之间存在着密切的和内在的联系.IFS的理论中有两个重要的结论: 一是如果IFS中的压缩映射均为仿射变换,则IFS的吸引子将是一个分形集合;二是实际中所遇到的图像都可以用IFS的吸引子逼近.根据这两个结论,如果限定IFS中的压缩变换均为仿射变换,又图像本身具有分形结构,即图像“整体”和“细节”之间存在仿射变换关系,则用IFS的吸引子逼近图像所产生的误差很小(理论误差值= 0);如果图像本身不具有分形结构,则逼近误差很大.所以,根据IFS逼近误差的大小,即可判定被研究的图像是否具有分形结构特征.大量的理论研究和实验数据分析表明,自然背景的图像符合分形模型,而人造目标的图像不符合分形模型.因此,可以根据IFS逼近误差的大小实现对自然背景中人造目标的检测.提取图像IFS的算法有多种.本文采用Bath FractalTransform (BFT)算法,它是一个原理简单、实现方便。展开更多
Visual background extraction algorithm(ViBe)uses the first frame image to initialize the background model,which can easily introduce the“ghost”.Because ViBe uses the fixed segmentation threshold to achieve the foreg...Visual background extraction algorithm(ViBe)uses the first frame image to initialize the background model,which can easily introduce the“ghost”.Because ViBe uses the fixed segmentation threshold to achieve the foreground and background segmentation,the detection results in many false detections for the highly dynamic background.To solve these problems,an improved ghost suppression and adaptive Visual Background Extraction algorithm is proposed in this paper.Firstly,with the pixel’s temporal and spatial information,the historical pixels of a certain combination are used to initialize the background model in the odd frames of the video sequence.Secondly,the background sample set combined with the neighborhood pixels are used to determine a complex degree of the background,to acquire the adaptive segmentation threshold.Thirdly,the update rate is adjusted based on the complexity of the background.Finally,the detected result goes through a post-processing to achieve better detection results.The experimental results show that the improved algorithm will not only quickly suppress the“ghost”,but also have a better detection in a complex dynamic background.展开更多
基金Foundation Item:The rearch work was supported by Specialized Research Fund for the Doctoral Program of Higher Education(No.20020699014)and the Aeronautics
文摘一个迭代函数系—IFS(Iterated Function System ) 由一组压缩映射组成, 它描述了研究对象“整体”和“局部”之间的变换构成关系.对于图像来讲,IFS描述了图像“整体”和“局部”之间的空间变换关系,因此,IFS可以视为图像的空间结构模型,而与IFS有关的参数可以视为反映图像空间结构的特征.IFS的提出起源于分形图像压缩的研究,因此IFS与分形之间存在着密切的和内在的联系.IFS的理论中有两个重要的结论: 一是如果IFS中的压缩映射均为仿射变换,则IFS的吸引子将是一个分形集合;二是实际中所遇到的图像都可以用IFS的吸引子逼近.根据这两个结论,如果限定IFS中的压缩变换均为仿射变换,又图像本身具有分形结构,即图像“整体”和“细节”之间存在仿射变换关系,则用IFS的吸引子逼近图像所产生的误差很小(理论误差值= 0);如果图像本身不具有分形结构,则逼近误差很大.所以,根据IFS逼近误差的大小,即可判定被研究的图像是否具有分形结构特征.大量的理论研究和实验数据分析表明,自然背景的图像符合分形模型,而人造目标的图像不符合分形模型.因此,可以根据IFS逼近误差的大小实现对自然背景中人造目标的检测.提取图像IFS的算法有多种.本文采用Bath FractalTransform (BFT)算法,它是一个原理简单、实现方便。
基金Project(61701060)supported by the National Natural Science Foundation of China。
文摘Visual background extraction algorithm(ViBe)uses the first frame image to initialize the background model,which can easily introduce the“ghost”.Because ViBe uses the fixed segmentation threshold to achieve the foreground and background segmentation,the detection results in many false detections for the highly dynamic background.To solve these problems,an improved ghost suppression and adaptive Visual Background Extraction algorithm is proposed in this paper.Firstly,with the pixel’s temporal and spatial information,the historical pixels of a certain combination are used to initialize the background model in the odd frames of the video sequence.Secondly,the background sample set combined with the neighborhood pixels are used to determine a complex degree of the background,to acquire the adaptive segmentation threshold.Thirdly,the update rate is adjusted based on the complexity of the background.Finally,the detected result goes through a post-processing to achieve better detection results.The experimental results show that the improved algorithm will not only quickly suppress the“ghost”,but also have a better detection in a complex dynamic background.