为了实现对光学传感器在轨性能的连续监测,文章使用敦煌场地的自动化观测数据对"风云三号"卫星可见光红外扫描辐射计(Visible and Infrared Radiometer,VIRR)近三年的数据进行了连续定标跟踪,推算VIRR各通道的定标斜率,基于...为了实现对光学传感器在轨性能的连续监测,文章使用敦煌场地的自动化观测数据对"风云三号"卫星可见光红外扫描辐射计(Visible and Infrared Radiometer,VIRR)近三年的数据进行了连续定标跟踪,推算VIRR各通道的定标斜率,基于敦煌辐射校正场自动化观测的定标相较于传统现场试验定标方法具有明显提高定标频次优势。采用搭载于Aqua卫星的高精度的中分辨率成像光谱仪(Aqua Moderate Resolution Imaging Spectroradiometer,Aqua MODIS)观测对自动观测定标方法进行精度验证,表明该方法在可见光近红外(Visible and Near Infrared,VNIR)具有3%的定标精度,在短波红外(Short Wave Infrared,SWIR)具有5%的定标精度。将该方法的结果与业务多场地方法的结果进行比较,在3年尺度上均值相对偏差整体低于2%。对VIRR的跟踪结果表明:基于场地自动化观测能够实现长期定标监测,可将该方法推广应用于其他卫星光学载荷以真正实现多载荷的场地自动化定标业务化。展开更多
Due to the intense vibration durirLg launching and rigorous orbital temperature environment, the kinematic parameters of space robot may be largely deviated from their nominal parameters. The disparity will cause the ...Due to the intense vibration durirLg launching and rigorous orbital temperature environment, the kinematic parameters of space robot may be largely deviated from their nominal parameters. The disparity will cause the real pose (including position and orientation) of the end effector not to match the desired one, and further hinder the space robot from performing the scheduled mission. To improve pose accuracy of space robot, a new self-calibration method using the distance measurement provided by a laser-ranger fixed on the end-effector is proposed. A distance-measurement model of the space robot is built according to the distance from the starting point of the laser beam to the intersection point at the declining plane. Based on the model, the cost function about the pose error is derived. The kinematic calibration is transferred to a non-linear system optimization problem, which is solved by the improved differential evolution (DE) algoritlun. A six-degree of freedom (6-DOF) robot is used as a practical simulation example, and the simulation results show: 1) A significant improvement of pose accuracy of space robot can be obtained by distance measurement only; 2) Search efficiency is increased by improved DE; 3) More calibration configurations may make calibration results better.展开更多
文摘为了实现对光学传感器在轨性能的连续监测,文章使用敦煌场地的自动化观测数据对"风云三号"卫星可见光红外扫描辐射计(Visible and Infrared Radiometer,VIRR)近三年的数据进行了连续定标跟踪,推算VIRR各通道的定标斜率,基于敦煌辐射校正场自动化观测的定标相较于传统现场试验定标方法具有明显提高定标频次优势。采用搭载于Aqua卫星的高精度的中分辨率成像光谱仪(Aqua Moderate Resolution Imaging Spectroradiometer,Aqua MODIS)观测对自动观测定标方法进行精度验证,表明该方法在可见光近红外(Visible and Near Infrared,VNIR)具有3%的定标精度,在短波红外(Short Wave Infrared,SWIR)具有5%的定标精度。将该方法的结果与业务多场地方法的结果进行比较,在3年尺度上均值相对偏差整体低于2%。对VIRR的跟踪结果表明:基于场地自动化观测能够实现长期定标监测,可将该方法推广应用于其他卫星光学载荷以真正实现多载荷的场地自动化定标业务化。
基金Projects(60775049,60805033) supported by National Natural Science Foundation of ChinaProject(2007AA704317) supported by the National High Technology Research and Development Program of China
文摘Due to the intense vibration durirLg launching and rigorous orbital temperature environment, the kinematic parameters of space robot may be largely deviated from their nominal parameters. The disparity will cause the real pose (including position and orientation) of the end effector not to match the desired one, and further hinder the space robot from performing the scheduled mission. To improve pose accuracy of space robot, a new self-calibration method using the distance measurement provided by a laser-ranger fixed on the end-effector is proposed. A distance-measurement model of the space robot is built according to the distance from the starting point of the laser beam to the intersection point at the declining plane. Based on the model, the cost function about the pose error is derived. The kinematic calibration is transferred to a non-linear system optimization problem, which is solved by the improved differential evolution (DE) algoritlun. A six-degree of freedom (6-DOF) robot is used as a practical simulation example, and the simulation results show: 1) A significant improvement of pose accuracy of space robot can be obtained by distance measurement only; 2) Search efficiency is increased by improved DE; 3) More calibration configurations may make calibration results better.