试制一种以聚α-烯烃为基础油的自动变速器油,将其加入公交车自动变速器中进行6×10^4 km 行车试验,检测油品性能指标随行驶里程增加的变化趋势,并进行了曲轴箱模拟试验,考察高温条件下的黏度、抗磨性变化。结果表明:随行驶里程的增...试制一种以聚α-烯烃为基础油的自动变速器油,将其加入公交车自动变速器中进行6×10^4 km 行车试验,检测油品性能指标随行驶里程增加的变化趋势,并进行了曲轴箱模拟试验,考察高温条件下的黏度、抗磨性变化。结果表明:随行驶里程的增加,所研制变速器油的运动黏度、黏度指数、最大无卡咬负荷先下降后趋稳,曲轴箱模拟试验结果与行车试验结果有一定相关性,但差别较大,不能准确作为行车试验的预期参考。展开更多
For the purpose of improving efficiency and realizing start–stop function, an electric oil pump(EOP) is integrated into an 8-speed automatic transmission(AT). A mathematical model is built to calculate the transmissi...For the purpose of improving efficiency and realizing start–stop function, an electric oil pump(EOP) is integrated into an 8-speed automatic transmission(AT). A mathematical model is built to calculate the transmission power loss and the hydraulic system leakage. Based on this model, a flow-based control strategy is developed for EOP to satisfy the system flow requirement. This control strategy is verified through the forward driving simulation. The results indicate that there is a best combination for the size of mechanical oil pump(MOP) and EOP in terms of minimum energy consumption. In order to get a quick and smooth starting process, control strategies of the EOP and the on-coming clutch are proposed. The test environment on a prototype vehicle is built to verify the feasibility of the integrated EOP and its control strategies. The results show that the selected EOP can satisfy the flow requirement and a quick and smooth starting performance is achieved in the start–stop function. This research has a high value for the forward design of EOP in automatic transmissions with respect to efficiency improvement and start–stop function.展开更多
文摘试制一种以聚α-烯烃为基础油的自动变速器油,将其加入公交车自动变速器中进行6×10^4 km 行车试验,检测油品性能指标随行驶里程增加的变化趋势,并进行了曲轴箱模拟试验,考察高温条件下的黏度、抗磨性变化。结果表明:随行驶里程的增加,所研制变速器油的运动黏度、黏度指数、最大无卡咬负荷先下降后趋稳,曲轴箱模拟试验结果与行车试验结果有一定相关性,但差别较大,不能准确作为行车试验的预期参考。
基金Project(51405010)supported by the National Natural Science Foundation of ChinaProject(2011BAG09B00)supported by the National Science and Technology Support Program of China
文摘For the purpose of improving efficiency and realizing start–stop function, an electric oil pump(EOP) is integrated into an 8-speed automatic transmission(AT). A mathematical model is built to calculate the transmission power loss and the hydraulic system leakage. Based on this model, a flow-based control strategy is developed for EOP to satisfy the system flow requirement. This control strategy is verified through the forward driving simulation. The results indicate that there is a best combination for the size of mechanical oil pump(MOP) and EOP in terms of minimum energy consumption. In order to get a quick and smooth starting process, control strategies of the EOP and the on-coming clutch are proposed. The test environment on a prototype vehicle is built to verify the feasibility of the integrated EOP and its control strategies. The results show that the selected EOP can satisfy the flow requirement and a quick and smooth starting performance is achieved in the start–stop function. This research has a high value for the forward design of EOP in automatic transmissions with respect to efficiency improvement and start–stop function.