期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
ASC-Net:腹腔镜视频中手术器械与脏器快速分割网络
1
作者 张新宇 张家意 高欣 《图学学报》 CSCD 北大核心 2024年第4期659-669,共11页
腹腔镜手术自动化是智能外科的重要组成部分,其前提是腔镜视野下手术器械与脏器实时精准分割。受术中血液污染、烟雾干扰等复杂因素影响,器械与脏器实时精准分割面临巨大挑战,现有图像分割方法均表现不佳。因此提出一种基于注意力感知... 腹腔镜手术自动化是智能外科的重要组成部分,其前提是腔镜视野下手术器械与脏器实时精准分割。受术中血液污染、烟雾干扰等复杂因素影响,器械与脏器实时精准分割面临巨大挑战,现有图像分割方法均表现不佳。因此提出一种基于注意力感知与空间通道的快速分割网络(ASC-Net),以实现腹腔镜图像中器械和脏器快速精准分割。在UNet架构下,设计了注意力感知与空间通道模块,通过跳跃连接将二者嵌入编码与解码模块间,使网络重点关注图像中相似目标间深层语义信息差异,同时多维度学习各目标的多尺度特征。此外,采用预训练微调策略,减小网络计算量。实验结果表明:在EndoVis2018数据集上的平均骰子系数(mDice)、平均重叠度(mIoU)、平均推理时间(mIT)分别为90.64%,86.40%和16.73 ms (60帧/秒),相比于现有最先进方法,mDice与mIoU提升了26%与39%,且mIT降低了56%;在AutoLaparo数据集上的mDice,mIoU和mIT分别为93.72%,89.43%和16.41ms(61帧/秒),同样优于对比方法。该方法在保证分割速度的同时有效提升了分割精度,实现了腹腔镜图像中手术器械和脏器的快速精准分割,将助力腹腔镜手术自动化快速发展。 展开更多
关键词 自动化手术 腹腔镜图像 多目标分割 注意力感知 多尺度特征 预训练微调
在线阅读 下载PDF
改进Deeplab v3+网络的手术器械分割方法 被引量:9
2
作者 杨波 陶青川 董沛君 《计算机工程与应用》 CSCD 北大核心 2021年第7期222-227,共6页
针对当前国内手术器械管理耗费人力,智能化程度低的问题,提出一种动态学习特征的改进Deeplab v3+网络模型语义分割算法。为了加强相关任务有效特征学习,在Deeplab v3+模型编码端嵌入注意力机制CBAM模块并通过密集深度分离卷积和扩张卷... 针对当前国内手术器械管理耗费人力,智能化程度低的问题,提出一种动态学习特征的改进Deeplab v3+网络模型语义分割算法。为了加强相关任务有效特征学习,在Deeplab v3+模型编码端嵌入注意力机制CBAM模块并通过密集深度分离卷积和扩张卷积提取图像高层特征;在解码端增加两路低层特征来源,保留了重要特征信息,提高了分割准确率。实验结果表明,改进后网络在手术器械数据集上MIoU、PA、Recall、F值分别为0.854、0.874、0.872和0.873。相较于其他语义分割网络,改进网络分割性能更优,有极大的工程实用价值。 展开更多
关键词 深度学习 手术器械自动化管理 语义分割 注意力机制
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部