期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
3D混杂场景中机械臂自主分拣小目标的方法
被引量:
8
1
作者
任秉银
魏坤
代勇
《哈尔滨工业大学学报》
EI
CAS
CSCD
北大核心
2019年第7期42-48,共7页
为解决机械臂在大小目标共存的3D混杂场景中无法利用3D视觉传感器直接感知分布于操作视场范围内的小目标这一难题,提出一种基于“固定安装的全局Kinect深度相机”与“安装在机械臂末端执行器上的移动相机(手眼相机)”相结合的视觉系统...
为解决机械臂在大小目标共存的3D混杂场景中无法利用3D视觉传感器直接感知分布于操作视场范围内的小目标这一难题,提出一种基于“固定安装的全局Kinect深度相机”与“安装在机械臂末端执行器上的移动相机(手眼相机)”相结合的视觉系统混合配置方法.固定的全局Kinect深度相机用于感知并获取视场范围内的大目标点云,进而识别估计其位姿,然后借助路径规划技术引导机械臂到达大目标的上方,启动手眼相机近距离获取小目标的图像;离线阶段获取小目标的CAD模型,虚拟2D相机在以目标中心为球心的虚拟球表面的不同位姿和不同半径处拍摄目标的一系列二维视图,并且储存在目标的3D形状模板数据库中;在线阶段从真实手眼相机拍摄的场景图像中基于图像金字塔分层逐一搜索匹配,找到与目标模板相匹配的所有实例并计算其二维位姿,经过一系列转换后得到在相机坐标系下的初始三维位姿,应用非线性最小二乘法对其进行位姿修正.由ABB机械臂和微软KinectV2传感器以及维视图像公司的工业相机进行位姿估计精度实验和混杂目标分拣实验,利用棋盘标定板来测定目标真实的位姿.实验结果表明,位置精度0.48mm,姿态精度0.62°,平均识别时间1.85s,识别率达到98%,远高于传统的基于特征和基于描述符的位姿估计方法,从而证明了提出方法的有效性和可行性.
展开更多
关键词
机械臂
3D感知
小目标
手眼相机
CAD模型
模板匹配
自主分拣
在线阅读
下载PDF
职称材料
基于YOLOv5的核桃品种识别与定位
被引量:
13
2
作者
张三林
张立萍
+2 位作者
郑威强
郭壮
付子强
《中国农机化学报》
北大核心
2022年第7期167-172,共6页
为实现对不同品种核桃的分类与定位,提出一种基于深度学习的核桃检测方法。首先,以新疆南疆地区主产的三种核桃为对象进行图像采集,并对图像进行翻转、裁剪、去噪、光照变换等操作制作核桃数据集;然后,采用基于YOLOv5的检测模型进行试验...
为实现对不同品种核桃的分类与定位,提出一种基于深度学习的核桃检测方法。首先,以新疆南疆地区主产的三种核桃为对象进行图像采集,并对图像进行翻转、裁剪、去噪、光照变换等操作制作核桃数据集;然后,采用基于YOLOv5的检测模型进行试验,并与YOLOv3、YOLOv4和Faster RCNN算法进行比较。结果表明,基于YOLOv5的模型对新2、新光和温185核桃检测的平均精度均值分别为99.5%、98.4%和97.1%,单幅图像检测耗时为7 ms。在相同数据集、相同试验环境下,该模型的检测速度是Faster RCNN的7倍,该模型的检测精度比YOLOv4高2.8%且模型大小仅为YOLOv4的1/14。试验结果表明,基于YOLOv5的核桃检测方法在检测精度和速度上是所有对比算法中最高的,适合本研究的检测需求,可为机器人自主分拣核桃提供研究基础。
展开更多
关键词
深度学习
核桃检测
YOLOv5
自主分拣
在线阅读
下载PDF
职称材料
题名
3D混杂场景中机械臂自主分拣小目标的方法
被引量:
8
1
作者
任秉银
魏坤
代勇
机构
哈尔滨工业大学机电工程学院
出处
《哈尔滨工业大学学报》
EI
CAS
CSCD
北大核心
2019年第7期42-48,共7页
文摘
为解决机械臂在大小目标共存的3D混杂场景中无法利用3D视觉传感器直接感知分布于操作视场范围内的小目标这一难题,提出一种基于“固定安装的全局Kinect深度相机”与“安装在机械臂末端执行器上的移动相机(手眼相机)”相结合的视觉系统混合配置方法.固定的全局Kinect深度相机用于感知并获取视场范围内的大目标点云,进而识别估计其位姿,然后借助路径规划技术引导机械臂到达大目标的上方,启动手眼相机近距离获取小目标的图像;离线阶段获取小目标的CAD模型,虚拟2D相机在以目标中心为球心的虚拟球表面的不同位姿和不同半径处拍摄目标的一系列二维视图,并且储存在目标的3D形状模板数据库中;在线阶段从真实手眼相机拍摄的场景图像中基于图像金字塔分层逐一搜索匹配,找到与目标模板相匹配的所有实例并计算其二维位姿,经过一系列转换后得到在相机坐标系下的初始三维位姿,应用非线性最小二乘法对其进行位姿修正.由ABB机械臂和微软KinectV2传感器以及维视图像公司的工业相机进行位姿估计精度实验和混杂目标分拣实验,利用棋盘标定板来测定目标真实的位姿.实验结果表明,位置精度0.48mm,姿态精度0.62°,平均识别时间1.85s,识别率达到98%,远高于传统的基于特征和基于描述符的位姿估计方法,从而证明了提出方法的有效性和可行性.
关键词
机械臂
3D感知
小目标
手眼相机
CAD模型
模板匹配
自主分拣
Keywords
robotic manipulator
3D perception
small object
eye-in-hand camera
CADmodel
temple matching
autonomous sorting
分类号
TP391 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
基于YOLOv5的核桃品种识别与定位
被引量:
13
2
作者
张三林
张立萍
郑威强
郭壮
付子强
机构
新疆大学机械工程学院
出处
《中国农机化学报》
北大核心
2022年第7期167-172,共6页
基金
上海援疆项目(2019690001)。
文摘
为实现对不同品种核桃的分类与定位,提出一种基于深度学习的核桃检测方法。首先,以新疆南疆地区主产的三种核桃为对象进行图像采集,并对图像进行翻转、裁剪、去噪、光照变换等操作制作核桃数据集;然后,采用基于YOLOv5的检测模型进行试验,并与YOLOv3、YOLOv4和Faster RCNN算法进行比较。结果表明,基于YOLOv5的模型对新2、新光和温185核桃检测的平均精度均值分别为99.5%、98.4%和97.1%,单幅图像检测耗时为7 ms。在相同数据集、相同试验环境下,该模型的检测速度是Faster RCNN的7倍,该模型的检测精度比YOLOv4高2.8%且模型大小仅为YOLOv4的1/14。试验结果表明,基于YOLOv5的核桃检测方法在检测精度和速度上是所有对比算法中最高的,适合本研究的检测需求,可为机器人自主分拣核桃提供研究基础。
关键词
深度学习
核桃检测
YOLOv5
自主分拣
Keywords
deep learning
walnut detection
YOLOv5
automatic sorting
分类号
S24 [农业科学—农业电气化与自动化]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
3D混杂场景中机械臂自主分拣小目标的方法
任秉银
魏坤
代勇
《哈尔滨工业大学学报》
EI
CAS
CSCD
北大核心
2019
8
在线阅读
下载PDF
职称材料
2
基于YOLOv5的核桃品种识别与定位
张三林
张立萍
郑威强
郭壮
付子强
《中国农机化学报》
北大核心
2022
13
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部