期刊文献+
共找到16篇文章
< 1 >
每页显示 20 50 100
基于残差分组卷积神经网络和多级注意力机制的源荷极端场景辨识方法 被引量:1
1
作者 郭红霞 李渊 +2 位作者 陈凌轩 王建学 马骞 《电网技术》 北大核心 2025年第2期459-469,I0019-I0024,共17页
为应对极端天气事件给新型电力系统安全稳定运行带来的影响,在电网的生产模拟中需要考虑极端场景。然而极端场景历史样本数量少,传统场景生成方法无法直接生成极端场景,需要对场景进行辨识。为此,提出一种计及源荷双侧的极端场景辨识方... 为应对极端天气事件给新型电力系统安全稳定运行带来的影响,在电网的生产模拟中需要考虑极端场景。然而极端场景历史样本数量少,传统场景生成方法无法直接生成极端场景,需要对场景进行辨识。为此,提出一种计及源荷双侧的极端场景辨识方法。首先,将风电、光伏和负荷序列进行重塑,并在通道维度上拼接;然后,基于分组卷积和深度残差网络,提取场景的时序特征和源荷场景之间的耦合特征;其次,模型内部嵌入通道注意力机制和多头注意力机制,以赋予重要特征更大的权重,并对场景进行分类;此外,采用改进损失函数解决训练样本中数据集不均衡的问题;最后,基于历史数据集进行验证。验证结果表明,所提方法能够对场景进行有效的分类,可以从历史场景中识别出具有高保供或高消纳风险的源荷极端场景。 展开更多
关键词 极端场景辨识 残差神经网络 分组卷积 注意力机制 源荷不确定性
在线阅读 下载PDF
基于并联残差膨胀卷积网络的短文本实体关系联合抽取
2
作者 曾伟 奚雪峰 崔志明 《现代电子技术》 北大核心 2025年第2期169-178,共10页
关系抽取旨在从文本中提取出实体对之间存在的语义关系,但现有的关系抽取方法均存在关系冗余和重叠的不足,尤其是对于短文本,会因上下文信息不足而出现语义信息不足和噪声大等问题。此外,一般流水线式的关系抽取模型还存在误差传递问题... 关系抽取旨在从文本中提取出实体对之间存在的语义关系,但现有的关系抽取方法均存在关系冗余和重叠的不足,尤其是对于短文本,会因上下文信息不足而出现语义信息不足和噪声大等问题。此外,一般流水线式的关系抽取模型还存在误差传递问题。为此,文中提出一种基于并联残差膨胀卷积网络的短文本实体关系联合抽取方法。该方法利用BERT生成语义特征信息,采用并联残差膨胀卷积网络来捕获语义信息,从而提升上下文信息的捕获能力并缓解噪声。联合抽取框架通过抽取潜在关系来过滤无关关系,然后再抽取实体以预测三元组,从而解决关系冗余和重叠问题,并提高计算效率。实验结果表明,与现有的主流模型相比,所提模型在三个公共数据集NYT、WebNLG和DuIE上的F1值分别为90.9%、91.3%和73.5%,相较于基线模型均有提升,验证了该模型的有效性。 展开更多
关键词 实体关系抽取 短文本 残差膨胀卷积网络 语义特征 联合抽取 BERT编码器
在线阅读 下载PDF
基于膨胀卷积残差网络的服装图像检索
3
作者 陈佳 张毅 +1 位作者 彭涛 何儒汉 《计算机应用与软件》 北大核心 2023年第5期227-234,242,共9页
针对传统的特征提取方法不能有效提取服装图像的语义特征和相似度计算泛化能力差的问题,提出一种基于膨胀卷积残差网络(Dilated Convolutional Residual Networks,DCRN)的服装图像检索方法。将膨胀卷积大尺寸感受野的优势和残差网络提... 针对传统的特征提取方法不能有效提取服装图像的语义特征和相似度计算泛化能力差的问题,提出一种基于膨胀卷积残差网络(Dilated Convolutional Residual Networks,DCRN)的服装图像检索方法。将膨胀卷积大尺寸感受野的优势和残差网络提取语义特征的优势结合,有效提取服装图像的特征;提出一种混合距离度量算法(Mixed Distance measurement algorithm,MD),通过计算余弦距离和马氏距离之和进行度量学习,从而稳定高效地计算特征向量的空间距离。实验表明DCRN方法能有效提取服装浅层的细节信息和深层的语义信息;在服装检索上,DCRN+MD方法的准确率较FashionNet方法有明显提升。 展开更多
关键词 残差网络 膨胀卷积 度量学习 马氏距离
在线阅读 下载PDF
密度导向的点云动态图卷积网络 被引量:1
4
作者 刘玉杰 孙晓瑞 +1 位作者 邵文斌 李宗民 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2024年第5期701-710,共10页
针对现有主流网络对于点云局部特征提取的能力不足,以及在特征提取过程中未考虑点云密度的问题,提出一种密度导向的点云动态图卷积网络.首先提出点云局部密度指数的概念,衡量点及其邻域点在相应的空间位置中的密集程度;然后利用局部密... 针对现有主流网络对于点云局部特征提取的能力不足,以及在特征提取过程中未考虑点云密度的问题,提出一种密度导向的点云动态图卷积网络.首先提出点云局部密度指数的概念,衡量点及其邻域点在相应的空间位置中的密集程度;然后利用局部密度指数动态赋予每个点一个膨胀因子,提出密度导向的动态点分组方法对点云构建局部图结构,对每个局部图结构构造动态边缘卷积模块进行特征的提取与聚合,既提取了点云的几何特征,又实现了置换不变性;最后采用残差网络的思想优化图神经网络的过平滑问题.实验结果表明,在分类数据集ModelNet40与ScanObjectNN上,所提网络的分类准确率分别为93.5%和82.2%;在分割数据集ShapeNet与S3DIS上,该网络的平均交并比分别为85.6%和60.4%,均高于DGCNN等主流网络;所提网络在多项任务中的精度都得到显著提升,且在处理密度不均的点云时有较好的鲁棒性,验证了所提算法的可行性与有效性. 展开更多
关键词 点云密度 膨胀因子 动态点分组 动态边缘卷积 卷积网络
在线阅读 下载PDF
基于注意力改进残差网络结构的表情识别方法 被引量:1
5
作者 张智 魏蘅 《计算机应用与软件》 北大核心 2024年第8期162-167,共6页
针对目前CNN在复杂图像中特征提取不充分的问题,提出一种基于注意力的改进残差网络的表情识别网络。设计一个双流网络在完成粗特征表情识别的同时检测关键点,并使用注意力机制增大关键点周边特征的权重。随后以残差网络为基础模型,改进... 针对目前CNN在复杂图像中特征提取不充分的问题,提出一种基于注意力的改进残差网络的表情识别网络。设计一个双流网络在完成粗特征表情识别的同时检测关键点,并使用注意力机制增大关键点周边特征的权重。随后以残差网络为基础模型,改进残差块之间的跳跃连接方式,并将残差块中的普通卷积改进为分组卷积来强化特征提取能力。最后联合两个表情识别网络进行分类,实验结果验证了该模型方案有着更卓越的性能。 展开更多
关键词 人脸表情识别 残差网络 注意力机制 分组卷积
在线阅读 下载PDF
基于空谱分组卷积密集网络的高光谱图像分类 被引量:2
6
作者 欧阳宁 李祖锋 林乐平 《计算机工程与设计》 北大核心 2022年第7期2031-2039,共9页
针对高光谱图像分类在特征提取过程中高分辨率信息丢失,导致分类精度下降的问题,提出一种基于空谱分组卷积密集网络的高光谱图像分类方法。设计光谱-空间三维分组卷积密集模块,对光谱与空间特征进行分步提取,利用分组卷积构造的密集网... 针对高光谱图像分类在特征提取过程中高分辨率信息丢失,导致分类精度下降的问题,提出一种基于空谱分组卷积密集网络的高光谱图像分类方法。设计光谱-空间三维分组卷积密集模块,对光谱与空间特征进行分步提取,利用分组卷积构造的密集网络能减少数据固有信息冗余,使高分辨率的特征进行重用,避免细节特征信息丢失;设计光谱残差注意力模块,该模块通过结合空-谱特征计算注意力权重,对提取到的光谱特征进行权重重分配,对光谱信息富有的区域进行增强。实验结果表明,相比于若干最优的深度网络方法,所提高光谱图像分类方法具有更好的分类性能。 展开更多
关键词 高光谱图像分类 三维分组卷积 密集网络 光谱残差注意力模块 空-谱特征
在线阅读 下载PDF
基于分组空洞残差网络的非侵入式负荷分解 被引量:5
7
作者 陈春玲 夏旻 +1 位作者 王珂 曹辉 《计算机应用与软件》 北大核心 2021年第9期53-59,共7页
针对当前深度学习在非侵入式负荷分解应用中准确率低、易梯度消失、对使用频率较低的电器分解误差大等问题,提出一种分组空洞残差网络。进行滑动处理增加样本数量后,一方面基于残差网络提取深层负荷特征,降低网络优化难度,解决梯度消失... 针对当前深度学习在非侵入式负荷分解应用中准确率低、易梯度消失、对使用频率较低的电器分解误差大等问题,提出一种分组空洞残差网络。进行滑动处理增加样本数量后,一方面基于残差网络提取深层负荷特征,降低网络优化难度,解决梯度消失问题;另一方面通过空洞卷积增大感受野,捕获更多数据,解决长时序数据较难学习的问题。实验结果表明,该模型比现有方法分解准确率更高,对使用频率较低的电器分解鲁棒性更好,对实现准确非侵入负荷分解有重要意义。 展开更多
关键词 负荷分解 深度残差网络 分组卷积 空洞卷积
在线阅读 下载PDF
改进残差神经网络在遥感图像分类中的应用 被引量:12
8
作者 刘春容 宁芊 +1 位作者 雷印杰 陈炳才 《科学技术与工程》 北大核心 2021年第31期13421-13429,共9页
针对传统卷积神经网络随着深度加深而导致网络退化以及计算量大等问题,提出一种改进残差神经网络的遥感图像场景分类方法。该方法以残差网络ResNet50作为主框架,在残差结构中引入深度可分离卷积和分组卷积,减少了网络的参数量和计算量,... 针对传统卷积神经网络随着深度加深而导致网络退化以及计算量大等问题,提出一种改进残差神经网络的遥感图像场景分类方法。该方法以残差网络ResNet50作为主框架,在残差结构中引入深度可分离卷积和分组卷积,减少了网络的参数量和计算量,加快模型收敛的同时也提升了分类精度。此外在网络中嵌入多尺度squeeze and excitation block模块对通道特征进行重校准,提取出更加重要的特征信息,进一步提升了网络的分类性能。在航空图像数据集(aerial image dataset,AID)和UCMerced_Land Use两个公开数据集上的分类精度分别为91.92%和93.52%,相比常规残差网络分类精度分别提高了3.38%和10.24%,证明所提方法在遥感图像场景分类任务中的可行性和有效性。 展开更多
关键词 遥感图像 场景分类 残差神经网络 分组卷积 深度可分离卷积 多尺度缩聚与激发模块
在线阅读 下载PDF
利用模块化残差网络的图像隐写分析 被引量:4
9
作者 郭继昌 何艳红 魏慧文 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2019年第1期79-85,共7页
为了提高图像隐写分析方法对小嵌入率隐写术检测的准确性,针对小嵌入率隐写术提出一种基于高度模块化网络结构的图像隐写分析方法。首先,通过重复残差网络单元来构建基础网络模型,以提取数字图像中的复杂统计特性;其次,增加分组卷积以... 为了提高图像隐写分析方法对小嵌入率隐写术检测的准确性,针对小嵌入率隐写术提出一种基于高度模块化网络结构的图像隐写分析方法。首先,通过重复残差网络单元来构建基础网络模型,以提取数字图像中的复杂统计特性;其次,增加分组卷积以提取残差图像通道信息,加强来自隐写信息的信号特征;最后,利用大量数据集对网络进行训练,得到了基于模块化残差网络的图像隐写分析方法。实验结果表明,所提方法相较于现有算法可以提取更有效的图像特征,从而得到更好的检测效果。同时,利用残差网络块作为模板,可以很容易地搭建网络模型,便于网络的调整和训练。 展开更多
关键词 隐写分析 残差网络 分组卷积 模块化 低嵌入率
在线阅读 下载PDF
基于时间卷积网络的刀具磨损在线监测
10
作者 柳大虎 汪永超 何欢 《组合机床与自动化加工技术》 北大核心 2023年第4期174-176,182,共4页
在刀具磨损监测领域中,传统卷积神经网络难以选择合适的卷积核大小,循环神经网络容易发生梯度消失和梯度爆炸,为克服以上缺点,引入时间卷积网络构建在线监测模型对刀具磨损量进行监测。考虑到原始数据量过大且每次走刀过程所采集数据量... 在刀具磨损监测领域中,传统卷积神经网络难以选择合适的卷积核大小,循环神经网络容易发生梯度消失和梯度爆炸,为克服以上缺点,引入时间卷积网络构建在线监测模型对刀具磨损量进行监测。考虑到原始数据量过大且每次走刀过程所采集数据量不同,对数据进行降采样处理,获得了大小为(7,5000)的网络输入数据。通过一维卷积神经网络和时间卷积块的依次叠加,对数据进行特征提取,使用全连接网络将特征映射到刀具磨损值。最后,使用PHM大赛中铣刀磨损的数据验证了模型的效果。实验结果证明,基于时间卷积网络的刀具磨损在线监测模型具有较强的泛化能力,在验证集上均方误差和平均绝对误差分别仅为65.16与6.21,相较于隐马尔科夫、梯度提升树等模型具有较大的提升。 展开更多
关键词 刀具磨损 时间卷积网络 时间序列预测 因果膨胀卷积 残差连接
在线阅读 下载PDF
深度学习在分组密码差分区分器上的研究应用 被引量:1
11
作者 侯泽洲 陈少真 任炯炯 《软件学报》 EI CSCD 北大核心 2022年第5期1893-1906,共14页
差分分析在分组密码分析领域是一种重要的研究方法,针对分组密码的差分分析的重点在于找到一个轮数或者概率更大的差分区分器.首先描述了通过深度学习技术构造差分区分器时所需要的数据集的构造方法,并且分别基于卷积神经网络(convoluti... 差分分析在分组密码分析领域是一种重要的研究方法,针对分组密码的差分分析的重点在于找到一个轮数或者概率更大的差分区分器.首先描述了通过深度学习技术构造差分区分器时所需要的数据集的构造方法,并且分别基于卷积神经网络(convolutional neural networks,CNN)和残差神经网络(residual neural network,ResNet)训练了两种轻量级分组密码算法SIMON32与SPECK32的差分区分器,并对两种模型得到的差分区分器进行了比较,发现综合考虑时间花销与精度的前提下,在SIMON32的差分区分器构造上,ResNet训练得到的模型表现更好,而CNN则在SPECK32的模型训练上表现的更好;其次,研究了网络模型中卷积运算个数对模型精度的影响,发现在原有模型基础上增加CNN模型的卷积层数和ResNet模型的残差块数,都会导致模型精度的下降.最后,给出在进行基于深度学习的差分区分器构造时的模型及参数选择建议,即,应该首要考虑低卷积层数的CNN模型和低残差块数的ResNet模型. 展开更多
关键词 深度学习 卷积神经网络 残差神经网络 分组密码 差分区分器
在线阅读 下载PDF
基于SDP和DG-ResNet的齿轮箱轴承故障诊断研究 被引量:2
12
作者 韩春雷 武兵 +2 位作者 熊晓燕 任俊锜 刘智飞 《机电工程》 CAS 北大核心 2021年第11期1395-1401,共7页
在复杂工况下,齿轮箱轴承运行会产生诸多故障,且各种故障之间相互影响,依靠传统的故障诊断方法难以满足高精度、智能化的故障分类要求,提出了一种结合对称点图像(SDP)算法技术和膨胀分组卷积残差网络(DG-ResNet)的齿轮箱轴承故障诊断方... 在复杂工况下,齿轮箱轴承运行会产生诸多故障,且各种故障之间相互影响,依靠传统的故障诊断方法难以满足高精度、智能化的故障分类要求,提出了一种结合对称点图像(SDP)算法技术和膨胀分组卷积残差网络(DG-ResNet)的齿轮箱轴承故障诊断方法。首先,将一维轴承振动信号数据通过SDP方法转化为二维图像,在不减少原始数据的前提下,图像可以清楚地显示出振动数据的原始特征;然后,将图像作为模型的输入,输入到DG-ResNet神经网络模型中,对图像进行了轴承故障特征的提取和分类,膨胀分组卷积残差块增加了卷积个数和感受野尺寸,可以让网络提取到高阶图像特征,实现了对轴承故障的高精度、智能化分类;最后,将该方法和多种经典卷积神经网络算法,进行了故障诊断准确率的对比。研究结果表明:与多种经典卷积神经网络算法相比,所提方法对轴承故障诊断的准确率远高于其他网络,诊断的平均准确率达到93%,该结果验证了所提方法的有效性;该方法能够对轴承故障进行高效分类,可以用于齿轮箱轴承的实际故障分类。 展开更多
关键词 齿轮箱轴承 故障诊断 对称点图像 膨胀分组卷积残差网络
在线阅读 下载PDF
基于改进Faster R-CNN的水母检测与识别算法 被引量:3
13
作者 高美静 李时雨 +5 位作者 刘泽昊 张博智 白洋 关宁 王萍 常秋悦 《计量学报》 CSCD 北大核心 2023年第1期54-61,共8页
提出一种基于改进Faster R-CNN水母检测与识别算法。首先,建立了包含7种水母的数据集;然后,针对ResNeXt(C=32)用于目标检测时出现计算量较大的问题,在保证精确度的前提下,将分支数C设置为8以降低计算量;最后,为解决水母检测时出现的检... 提出一种基于改进Faster R-CNN水母检测与识别算法。首先,建立了包含7种水母的数据集;然后,针对ResNeXt(C=32)用于目标检测时出现计算量较大的问题,在保证精确度的前提下,将分支数C设置为8以降低计算量;最后,为解决水母检测时出现的检测精度低和小个体无法检测的问题,在残差网络中引入膨胀卷积。实验结果表明:该算法较VGG16、ResNet101、ResNeXt(C=32)和ResNeXt(C=8)方法,mAP值分别提高了3.15%、2.09%、3.01%和2.36%;F 1-score分别提高了2.53%、1.99%、2.01%和2.31%;loss损失函数收敛值更优,收敛精度趋近于0。P-R曲线、可视化效果分析和水母视频检测的结果证明:该算法的水母检测准确率和水母检测数量明显优于其他算法,检测精度较高,基本可以达到实时监测的要求。 展开更多
关键词 计量学 水母检测与识别 Faster R-CNN ResNeXt 膨胀卷积 残差网络
在线阅读 下载PDF
基于R-D SSD模型航空发动机安装工位检测算法 被引量:1
14
作者 陈科山 郝宇 +1 位作者 何泓波 李坤龙 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2021年第4期682-689,共8页
为解决航空发动机在安装过程中大多实行人工安装、定位不精确等问题,在研究其自动化安装方法中,针对航空发动机安装工位的检测需求,提出了一种残差网络与膨胀卷积相融合的SSD改进算法(R-D SSD)。将经典SSD模型的主干网络VGG16替换为残... 为解决航空发动机在安装过程中大多实行人工安装、定位不精确等问题,在研究其自动化安装方法中,针对航空发动机安装工位的检测需求,提出了一种残差网络与膨胀卷积相融合的SSD改进算法(R-D SSD)。将经典SSD模型的主干网络VGG16替换为残差网络ResNet-101,并增加其输出特征图上的预选框数量,解决了原始算法对底层特征抓取能力不足的问题,进而弥补了对小目标检测效果较差的缺陷;利用膨胀卷积扩大网络的感受野,获取足够的安装工位边缘特征细节信息,在不改变网络结构的同时,保证了模型良好的实时性和对目标的检测精度。实验表明:对于小目标数据集和整个数据集,R-D SSD算法的平均检测精度较原始算法分别提高了8.6%和4.0%,可以满足航空发动机安装时平均检测精度不低于85%的要求。 展开更多
关键词 安装工位 残差网络 膨胀卷积 SSD模型 小目标检测 预选框数量
在线阅读 下载PDF
基于3D CNN的鼻咽癌CT图像分割 被引量:6
15
作者 肖银燕 全惠敏 《计算机工程与科学》 CSCD 北大核心 2019年第8期1444-1452,共9页
鼻咽癌CT图像分割是鼻咽癌诊断和治疗的先行任务,然而,由于鼻咽癌细胞的外形多样、灰度不均匀、边界模糊、病变形状复杂等因素使得分割难以准确。针对这一问题,提出了一种基于三维深度卷积神经网络的鼻咽癌CT图像分割方法,三维深度卷积... 鼻咽癌CT图像分割是鼻咽癌诊断和治疗的先行任务,然而,由于鼻咽癌细胞的外形多样、灰度不均匀、边界模糊、病变形状复杂等因素使得分割难以准确。针对这一问题,提出了一种基于三维深度卷积神经网络的鼻咽癌CT图像分割方法,三维深度卷积神经网络框架的前5层采用卷积核为33的普通卷积,中间6层采用空洞率为2的膨胀卷积,后6层采用空洞率为4的膨胀卷积,每2个卷积层之间有一个残差连接,最后利用Softmax函数对每个像素点进行分类。膨胀卷积有助于得到精确的密集预测和沿物体边界的精细分割图,残差连接使深度卷积神经网络中的信息传播平滑,并能提高训练速度。实验结果表明,在鼻咽癌CT图像分割中该方法与其他主流方法相比有更好的性能。 展开更多
关键词 鼻咽癌图像分割 深度卷积神经网络 膨胀卷积 残差连接
在线阅读 下载PDF
结合CWT和LightweightNet的滚动轴承实时故障诊断方法 被引量:6
16
作者 李飞龙 和伟辉 +1 位作者 刘立芳 齐小刚 《智能系统学报》 CSCD 北大核心 2023年第3期496-505,共10页
针对普通的深度学习算法用于轴承故诊断分类时计算量大、消耗成本高的问题,提出一种结合连续小波变换和轻量级神经网络的滚动轴承实时故障诊断方法。首先,使用Morlet母小波函数对轴承振动加速度数据进行连续小波变换,提取出时频域特征... 针对普通的深度学习算法用于轴承故诊断分类时计算量大、消耗成本高的问题,提出一种结合连续小波变换和轻量级神经网络的滚动轴承实时故障诊断方法。首先,使用Morlet母小波函数对轴承振动加速度数据进行连续小波变换,提取出时频域特征并将一维信号转换成二维图片;然后,结合分组卷积、通道混洗、倒残差结构等轻量级神经网络设计元素设计一个轻量级卷积神经网络LightweightNet用于时频图片的故障分类,LightweightNet网络在保证具有足够特征提取能力的同时还具有轻量级特点。使用凯斯西储大学轴承故障数据集进行实验表明,本方法相比于其他使用经典轻量级神经网络的方法具有更少的参数、最高的准确率和更快的诊断速度,基本可以实现滚动轴承的实时故障诊断,且在内存消耗与模型存储占用空间方面远小于其他同类方法。 展开更多
关键词 滚动轴承 故障诊断 连续小波变换 时频域特征 轻量级神经网络 分组卷积 通道混洗 残差结构
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部