期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于多重分形的膝关节摆动信号特征提取与分类 被引量:2
1
作者 徐一平 邱天爽 刘宇鹏 《信号处理》 CSCD 北大核心 2017年第3期383-388,共6页
膝关节摆动(VAG)信号是膝关节在屈伸活动时由于接触摩擦所产生的振动,它能够反映髌骨软化症、半月板损伤和交叉韧带损伤等膝关节损伤疾病的特征与状态,正逐步得到临床医学的重视。本文依据多重分形去趋势波动方法,定量分析了正常和异常... 膝关节摆动(VAG)信号是膝关节在屈伸活动时由于接触摩擦所产生的振动,它能够反映髌骨软化症、半月板损伤和交叉韧带损伤等膝关节损伤疾病的特征与状态,正逐步得到临床医学的重视。本文依据多重分形去趋势波动方法,定量分析了正常和异常VAG信号的特性,提取了分形标度指数、多重分形谱极值点、广义分形维数和时频信息熵值等特征信息,并采用支持向量机对正常和异常VAG信号进行分类,得到较高的分类准确率,对于膝关节损伤疾病的无创检测和辅助诊断具有重要意义。 展开更多
关键词 膝关节摆动信号 多重分形 时频信息熵 支持向量机
在线阅读 下载PDF
基于PCNN-LSTM神经网络的膝关节摆动信号分类识别
2
作者 杨佳 邱天爽 刘宇鹏 《中国生物医学工程学报》 CAS CSCD 北大核心 2021年第2期129-136,共8页
膝关节摆动(VAG)信号是指膝关节屈曲或伸展时发出的声音或振动信号,可灵敏、客观地描述膝关节的健康状态,在膝关节疾病的无创检测中具有重要作用。现有的对VAG信号正常和异常分类方法自动化程度低,且分类准确度较低,总体性能有待进一步... 膝关节摆动(VAG)信号是指膝关节屈曲或伸展时发出的声音或振动信号,可灵敏、客观地描述膝关节的健康状态,在膝关节疾病的无创检测中具有重要作用。现有的对VAG信号正常和异常分类方法自动化程度低,且分类准确度较低,总体性能有待进一步提升。因此,提出一种基于改进卷积神经循环网络(PCNN-LSTM)的VAG信号分类算法。首先,利用经验模式分解(EMD)和小波变换,将一维VAG信号变换为二维时频特征谱图,并将其用作数据集;然后,在串行神经网络的基础上融合并行卷积神经网络结构,再与LSTM神经网络相结合构成改进的PCNN-LSTM模型,以此区分正常或异常的VAG信号,实现对膝关节健康状态的自动检测。采用由加速度传感器(181A02)和USB采集仪(FSC812)所采集的真实VAG信号,构建数据集对所提出算法性能进行验证。数据集由654例样本构成,其中包括健康数据222例和患有膝关节疾病的数据432例。实验表明,所提出算法的分类正确率为96.93%,灵敏度为100%,特异性为95.56%,相比其他算法可得到较好的分类识别效果,对于膝关节疾病的无创检测和辅助诊断具有重要意义。 展开更多
关键词 膝关节摆动信号 经验模态分解 小波变换 卷积神经网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部