期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
膜进样质谱仪法在测量水体中过饱和溶解氮气的应用研究
1
作者 孙干 袁酉铨 +5 位作者 薛敬阳 卢晶莹 孙志峰 邢龙 谭升魁 冯镜洁 《水力发电》 CAS 2024年第3期6-11,119,共7页
高坝泄洪会导致水中溶解气体过饱和,使鱼类患气泡病甚至死亡。为探究大坝泄洪条件下,真实水体中的过饱和溶解氮的生成及其随泄洪条件的时空变化规律,利用膜进样质谱仪开展向家坝水电站泄洪条件下溶解氮的测量。结果表明,野外条件下采样... 高坝泄洪会导致水中溶解气体过饱和,使鱼类患气泡病甚至死亡。为探究大坝泄洪条件下,真实水体中的过饱和溶解氮的生成及其随泄洪条件的时空变化规律,利用膜进样质谱仪开展向家坝水电站泄洪条件下溶解氮的测量。结果表明,野外条件下采样运输过程中溶解气体的释放损失,导致膜进样质谱仪测量得到的溶解氮含量比通过利用总溶解气体和溶解氧的现场实测值计算得到的溶解氮含量低;利用质谱仪测量得到的溶解氮测值与总溶解气体测值之间同增的趋势性较好,但溶解氮测值与溶解氧测值之间相关关系较差。总结下来,向家坝电站泄洪导致坝下溶解氮、溶解氧和总溶解气体均达到过饱和,溶解气体饱和度在横向上基本均匀分布;受上游溪洛渡泄洪影响,向家坝坝前仍保持一定程度的溶解气体过饱和,并在垂向上表现出不均匀分布;泄洪生成的溶解气体饱和度随泄洪流量的增大而增大。为保证测量精度,建议原位开展测量,避免采样后长距离运输造成溶解气体的损失;在测量条件不满足的情况下,建议测量总溶解气体和溶解氧后进行溶解氮值换算。 展开更多
关键词 溶解氮 过饱和 测量 膜进样质谱仪 高坝泄洪 向家坝水电站
在线阅读 下载PDF
利用膜进样质谱法测定不同氮肥用量下反硝化氮素损失 被引量:13
2
作者 王书伟 颜晓元 +3 位作者 单军 夏永秋 汤权 林静慧 《土壤》 CAS CSCD 北大核心 2018年第4期664-673,共10页
利用膜进样质谱仪(MIMS)测定了太湖流域典型稻田不同氮肥施用梯度下,土壤反硝化氮素损失量,同时也对氨挥发通量进行了观测。根据两年的田间试验结果得到:在常规施氮处理(N300)下,每年平均有54.8 kg/hm^2 N通过反硝化损失,有约54.0 kg/hm... 利用膜进样质谱仪(MIMS)测定了太湖流域典型稻田不同氮肥施用梯度下,土壤反硝化氮素损失量,同时也对氨挥发通量进行了观测。根据两年的田间试验结果得到:在常规施氮处理(N300)下,每年平均有54.8 kg/hm^2 N通过反硝化损失,有约54.0 kg/hm^2 N通过氨挥发损失,分别占肥料施用量的18.3%和18.0%,两者损失量相当。通过反硝化和氨挥发损失的氮素量随着氮肥用量增加而增加,田面水的NH_4^+-N、NO_3~–-N、DOC和pH浓度影响稻田土壤反硝化速率。在保产增效施氮处理(N_270)下,氮肥施用量比常规减少10%,水稻产量增加了5.5%,而通过反硝化和氨挥发损失的氮素量分别下降了1.1%和3.1%,氮肥利用率提高了约5.5%。在增施氮肥处理(N375)下,因作物产量增加使得氮肥利用率比N300增加,但通过氨挥发和反硝化的氮素损失量也最大。因此,通过综合集约优化田间管理措施,降低氮肥用量,可实现增产增效的目的。 展开更多
关键词 反硝化 膜进样质谱仪 N2/Ar技术 氨挥发 氮肥利用率
在线阅读 下载PDF
N_2:Ar法直接测定淹水环境反硝化产物N_2的产生速率 被引量:17
3
作者 李晓波 夏永秋 +1 位作者 郎漫 颜晓元 《农业环境科学学报》 CAS CSCD 北大核心 2013年第6期1284-1288,共5页
反硝化是活性氮变为惰性氮返回大气的最主要过程,对于控制生态系统氮平衡至关重要,然而反硝化速率的测定,特别是淹水环境的反硝化速率测定一直是一个难题。为深入研究淹水环境反硝化过程及机理,建立了可以模拟原位淹水环境的培养装置,... 反硝化是活性氮变为惰性氮返回大气的最主要过程,对于控制生态系统氮平衡至关重要,然而反硝化速率的测定,特别是淹水环境的反硝化速率测定一直是一个难题。为深入研究淹水环境反硝化过程及机理,建立了可以模拟原位淹水环境的培养装置,结合可以精确测定水体N2∶A(r物质的量比)的膜进样质谱仪(MIMS),实现了直接对原状沉积物反硝化速率的精确测定。实验结果表明,MIMS在长时间(10h)连续测定情况下仍能保持良好的信号稳定性,水温12℃和30℃标样的N2∶Ar变异系数(CV)分别为0.26%和0.08%。整个实验体系(培养装置结合MIMS)重复性较好,测得不同NO-3-N浓度处理的3个平行沉积物柱样反硝化速率的CV<9.05%;培养实验所取平行水样标准偏差(SD)<0.1μmol·L-1,远小于培养期内N2浓度的实际增加量(4.5μmol·L-1),说明该系统可以满足对淹水环境反硝化速率的测定要求。应用该方法得到的沉积物反硝化速率与NO-3-N浓度关系符合米氏方程(R2=0.9992,P<0.0001);该方法和NO-3-N消失法测定的结果具有显著的线性关系(R2=0.9998,P<0.0001)。表明通过该实验体系所建立的N2∶Ar法在今后深入开展水体氮循环研究中具有良好的应用前景。 展开更多
关键词 N2 Ar 膜进样质谱仪(MIMS) 反硝化 溶解N2
在线阅读 下载PDF
环境因子对水稻土硝酸根异化还原过程速率和分配的影响 被引量:2
4
作者 金科 魏志军 +3 位作者 马小芳 李承霖 单军 颜晓元 《土壤学报》 CAS CSCD 北大核心 2023年第4期1035-1046,共12页
以五常、常熟和雅安水稻土为研究对象,通过室内泥浆培养,利用基于膜进样质谱仪(Membrane Inlet Mass Spectrometer,MIMS)的15N示踪技术,探究了温度、pH、NO_(3)^(–)浓度、C/N、Fe^(2+)和S2–浓度对三种水稻土反硝化和硝酸根异化还原成... 以五常、常熟和雅安水稻土为研究对象,通过室内泥浆培养,利用基于膜进样质谱仪(Membrane Inlet Mass Spectrometer,MIMS)的15N示踪技术,探究了温度、pH、NO_(3)^(–)浓度、C/N、Fe^(2+)和S2–浓度对三种水稻土反硝化和硝酸根异化还原成铵(Dissimilatory nitrate reduction to ammonium,DNRA)速率及二者占硝酸根还原过程相对贡献的影响。结果表明,在所研究的稻田土壤中,反硝化是NO_(3)^(–)异化还原过程的主导途径,占比87.97%~91.73%,而DNRA仅占8.27%~12.03%。反硝化和DNRA速率随温度升高均呈指数增长,且DNRA占NO_(3)^(–)异化还原的比例(RDNRA)也随温度升高呈增长趋势。反硝化和DNRA速率分别在pH为7或者8.5时最高,相对于碱性环境(4.92%~14.67%),酸性环境中RDNRA(6.24%~15.56%)更高。反硝化和DNRA速率与NO_(3)^(–)浓度之间关系符合米氏方程,且反硝化的最大速率(Vmax)和米氏常数(Km)均大于DNRA。与未加碳源对照组相比,C/N为2.5时,反硝化速率显著提高了22%~35%;C/N大于2.5时,DNRA速率显著提高了74%~199%。三种土壤中,Fe^(2+)添加和S2–添加处理中呈现出类似的趋势,均在低浓度电子供体(即Fe^(2+)和S2–浓度分别为300~500μmol·L^(-1)和50~62.5μmol·L^(-1))时呈现出最高的反硝化速率,而DNRA速率达到峰值则需要更高浓度的电子供体(即Fe^(2+)和S2–浓度分别为800~1000μmol·L^(-1)和100~125μmol·L^(-1))。综上可知,环境因子可显著影响NO_(3)^(–)异化还原过程的速率及分配,其中高温、高C/N、高浓度Fe^(2+)和S2–有利于更多的NO_(3)^(–)分配给DNRA过程,而高浓度NO_(3)^(–)会提高NO_(3)^(–)向反硝化过程的分配。上述研究结果深化了对水稻土NO3–异化还原过程分配的认识,对于探寻潜在农学措施提高DNRA过程的分配比例,进而提高土壤中氮素的固持和提高稻田氮肥利用率具有重要的科学意义。 展开更多
关键词 水稻土 反硝化 硝酸根异化还原成铵 15N同位素示踪 膜进样质谱仪
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部