期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
改进SSA-HKELM模型在海洋弯管剩余寿命预测中的应用 被引量:1
1
作者 骆正山 王良雨 +1 位作者 高懿琼 骆济豪 《安全与环境学报》 北大核心 2025年第5期1770-1779,共10页
针对海洋油气弯管剩余寿命预测问题,建立了基于改进麻雀搜索算法(Improved Sparrow Search Algorithm,ISSA)优化混合核极限学习机(Hybrid Kernel Extreme Learning Machine,HKELM)的腐蚀深度预测模型。通过最优拉丁超立方初始化种群分布... 针对海洋油气弯管剩余寿命预测问题,建立了基于改进麻雀搜索算法(Improved Sparrow Search Algorithm,ISSA)优化混合核极限学习机(Hybrid Kernel Extreme Learning Machine,HKELM)的腐蚀深度预测模型。通过最优拉丁超立方初始化种群分布,采用黄金正弦、Tent混沌扰动和柯西变异提高麻雀搜索算法(Sparrow Search Algorithm,SSA)的收敛速度和搜索能力,运用ISSA算法优化HKELM的网络参数,构建海洋弯管腐蚀深度预测模型。依据改进的ASME B31G剩余强度评价准则,计算最大允许腐蚀深度,结合管道腐蚀发展趋势模型,对薄弱弯管进行腐蚀剩余寿命预测。以某海洋管道弯管试验数据为基础对模型进行验证,模型预测精度高达0.989 7,能较好地预测海洋弯管的最大腐蚀深度及未来腐蚀发展趋势。寿命预测结果表明,部分弯管剩余寿命未超过其预期服役时间,为海洋弯管的安全运维及维修更换提供了决策支持。 展开更多
关键词 安全工程 海洋弯管 剩余寿命 改进麻雀搜索算法 混合核极限学习机 腐蚀深度预测模型
在线阅读 下载PDF
基于PSO-GRNN模型的埋地管道腐蚀剩余寿命预测 被引量:28
2
作者 王文辉 骆正山 张新生 《表面技术》 EI CAS CSCD 北大核心 2019年第10期267-275,284,共10页
目的构建埋地管道腐蚀深度预测模型,预测腐蚀管道的剩余使用寿命。方法依据ASME B31G剩余强度评价标准,给出管道的最大允许腐蚀深度计算方法,引入广义回归神经网络(GRNN),构建埋地管道腐蚀深度预测模型,采用粒子群算法(PSO)优化GRNN的... 目的构建埋地管道腐蚀深度预测模型,预测腐蚀管道的剩余使用寿命。方法依据ASME B31G剩余强度评价标准,给出管道的最大允许腐蚀深度计算方法,引入广义回归神经网络(GRNN),构建埋地管道腐蚀深度预测模型,采用粒子群算法(PSO)优化GRNN的网络参数,结合管道腐蚀发展趋势预测方法,对埋地薄弱管道进行腐蚀剩余寿命预测。以陕西省某埋地输油管道为例,选取8个主要外腐蚀因素,构建外腐蚀指标体系,借助Pycharm编程仿真,结合埋片试验,对该模型预测结果进行验证分析,并预测各腐蚀管段剩余使用寿命。结果与BP模型相比,PSO-GRNN模型的管道腐蚀深度预测结果最大相对误差控制在13.77%以内,平均相对误差仅为6.63%。寿命预测结果显示,部分管段的剩余使用寿命未能达到其预期服役寿命。结论所建模型预测性能要明显优于BP模型,预测精度更高,能够较好地预测埋地管道的最大腐蚀深度和未来的腐蚀发展规律,剩余寿命预测结果贴近实际,为管道的维修和更换提供了指导依据,在实际工程中,具有一定的应用价值。 展开更多
关键词 埋地管道 腐蚀深度预测模型 腐蚀发展趋势 剩余寿命预测 粒子群算法(PSO) 广义回归神经网络(GRNN)
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部