期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
基于CWGAN⁃ABiLSTM⁃FCN的运动想象脑电信号分类
1
作者 吴生彪 程显朋 李花宁 《现代电子技术》 北大核心 2025年第7期57-64,共8页
针对运动想象脑电信号(MI⁃EEG)样本数据分布不平衡、时序特征提取时对长距离的依赖和关注度不均衡、局部特征提取难导致的基于MI⁃EEG的运动意图识别实时性差、精度低的问题,提出一种融合改进的双向长短时记忆神经网络(BiLSTM)和全卷积... 针对运动想象脑电信号(MI⁃EEG)样本数据分布不平衡、时序特征提取时对长距离的依赖和关注度不均衡、局部特征提取难导致的基于MI⁃EEG的运动意图识别实时性差、精度低的问题,提出一种融合改进的双向长短时记忆神经网络(BiLSTM)和全卷积神经网络(FCN)的MI⁃EEG信号分类方法。首先,该方法利用条件生成对抗网络产生虚假的MI⁃EEG信号样本,实现训练样本集的有效扩充,解决了数据集过少且各类别数量不平衡的问题;其次,利用双向自注意力长短时记忆神经网络和全卷积神经网络的各自优势,避免了时序特征提取时对长距离的依赖和关注度不均衡、局部特征提取难以及无法兼顾MI⁃EEG信号的时⁃空域特征的问题;在此基础上,构建融合特征与动作分类标签间的非线性映射关系,从而提高模型的识别精度。最终将此分类模型与其他的MI⁃EEG分类模型在测试数据集进行了对比实验。研究成果表明,该MI⁃EEG识别模型准确度达到了97%,显示出较强的泛化能力。 展开更多
关键词 运动想象 脑电信号分类 生成对抗网络 长短时记忆网络 全卷积神经网络 注意力机制
在线阅读 下载PDF
基于小波变换和AdaBoost极限学习机的癫痫脑电信号分类 被引量:12
2
作者 韩敏 孙卓然 《计算机应用》 CSCD 北大核心 2015年第9期2701-2705,2709,共6页
针对单一极限学习机(ELM)在癫痫脑电信号研究中分类结果不稳定、泛化能力差的缺陷,提出一种基于互信息(MI)的Ada Boost极限学习机分类算法。该算法将Ada Boost引入到极限学习机中,并嵌入互信息输入变量选择,以强学习器最终的性能作为评... 针对单一极限学习机(ELM)在癫痫脑电信号研究中分类结果不稳定、泛化能力差的缺陷,提出一种基于互信息(MI)的Ada Boost极限学习机分类算法。该算法将Ada Boost引入到极限学习机中,并嵌入互信息输入变量选择,以强学习器最终的性能作为评价指标,实现对输入变量以及网络模型的优化。利用小波变换(WT)提取脑电信号特征,并结合提出的分类算法对UCI脑电数据集以及波恩大学癫痫脑电数据进行分类。实验结果表明,所提方法相比传统方法以及其他同类型研究,在分类精度和稳定性上有着明显提高,并具有较好的泛化性能。 展开更多
关键词 ADABOOST 极限学习机 小波变换 互信息 脑电信号分类
在线阅读 下载PDF
基于分数阶傅里叶变换和RVM的运动想象脑电信号分类方法 被引量:2
3
作者 詹宏锋 《计算机应用与软件》 北大核心 2020年第11期146-153,共8页
提出一种基于分数阶傅里叶变换(Fractional Fourier Transform,FRFT)和相关向量机(Relevance Vector Machine,RVM)的运动想象脑电信号分类方法。利用不同阶次的FRFT将脑电信号转换至分数域,在分数域提取44维分数阶特征,充分扩展特征域... 提出一种基于分数阶傅里叶变换(Fractional Fourier Transform,FRFT)和相关向量机(Relevance Vector Machine,RVM)的运动想象脑电信号分类方法。利用不同阶次的FRFT将脑电信号转换至分数域,在分数域提取44维分数阶特征,充分扩展特征域的同时尽可能多地从不同维度提取信号中的有用信息。利用RVM分类器进行特征选择和分类识别,在自动确定最优分类特征的同时获得理想的分类结果。基于国际BCI竞赛2003中Graz数据的实验结果表明,该方法可以获得97.51%的正确识别率,并且具有较强的泛化能力和噪声稳健性。 展开更多
关键词 脑电信号分类 特征提取 分数阶傅里叶变换 相关向量机
在线阅读 下载PDF
基于节律同化效应的思维脑电信号分类研究
4
作者 陈香 杨基海 +2 位作者 李强 何为 尹少华 《中国生物医学工程学报》 CAS CSCD 北大核心 2006年第4期430-437,共8页
通过对正弦调制光(SML)刺激和无刺激思维脑电信号的对比分类研究,探索了思维脑电信号的节律同化现象对思维脑电信号分类的影响。研究结果表明,大脑在SML刺激下进行思维作业时,思维EEG信号携带的与刺激频率有关的节律同化信息能提高某些... 通过对正弦调制光(SML)刺激和无刺激思维脑电信号的对比分类研究,探索了思维脑电信号的节律同化现象对思维脑电信号分类的影响。研究结果表明,大脑在SML刺激下进行思维作业时,思维EEG信号携带的与刺激频率有关的节律同化信息能提高某些思维作业的分类正确率,并且SML刺激产生的局部节律同化效应能减少用于提供分类信息的EEG信号的导联数。这些结果有利于提高基于思维作业脑-计算机接口(BCI)的通信准确率和速度。 展开更多
关键词 思维脑电信号分类 正弦调制光刺激 节律同化效应
在线阅读 下载PDF
基于经验模态-小波包分解和卷积神经网络的P300脑电信号分类研究 被引量:4
5
作者 崔丽丽 郑赟 +1 位作者 孟小飞 马玉良 《传感技术学报》 CAS CSCD 北大核心 2022年第4期511-517,共7页
针对P300脑电信号信噪比低、随机性强及个体差异性大等问题,提出了一种将经验模态分解(EMD)和小波包分解(WP)相结合的滤波方法,并使用改进的卷积神经网络(CNN)对脑电信号进行分类识别。首先利用经验模态分解算法将原始脑电信号分解成若... 针对P300脑电信号信噪比低、随机性强及个体差异性大等问题,提出了一种将经验模态分解(EMD)和小波包分解(WP)相结合的滤波方法,并使用改进的卷积神经网络(CNN)对脑电信号进行分类识别。首先利用经验模态分解算法将原始脑电信号分解成若干个本征模函数(IMF)分量,并对每个分量进行频谱分析以去除0~30 Hz主频段以外的分量;然后,对保留的IMF分量进行小波包分解,根据P300电位的有效时频信息,选择合适的频段进行重构,再将重构后的各个本征模函数叠加,得到经过滤波后的脑电信号;最后,设计合适的卷积神经网络结构,对P300信号进行分类识别。本文使用国际BCI竞赛数据集对提出的方法进行验证。实验结果表明,两名被试的分类准确率分别为97.78%、95.56%,说明该方法能够有效地改善P300信号的识别效果(相比其他方法至少提升了2.78%,1.39%),为进一步提高基于P300信号脑机接口系统的性能提供了一种新的有效的途径。 展开更多
关键词 脑电信号分类 经验模态分解 小波包分解 卷积神经网络
在线阅读 下载PDF
基于LMD和CSP的多域融合脑电信号分类方法 被引量:1
6
作者 陈舒 周青 《计算机应用与软件》 北大核心 2023年第3期130-136,共7页
运动想象脑电信号非平稳、非线性和微弱性特征明显,采用传统单一维度特征进行分类时存在识别率低、鲁棒性差的问题。提出一种基于局部均值分解(Local Mean Decomposition,LMD)和共空间模式(Common Spatial Pattern,CSP)的多域融合脑电... 运动想象脑电信号非平稳、非线性和微弱性特征明显,采用传统单一维度特征进行分类时存在识别率低、鲁棒性差的问题。提出一种基于局部均值分解(Local Mean Decomposition,LMD)和共空间模式(Common Spatial Pattern,CSP)的多域融合脑电信号分类方法,采用LMD对运动脑电信号进行自适应分解得到多个乘积分量(Product Function,PF),进而从PF中提取反映不同信号差异特性的12维时-频域特征,将PF作为CSP的多通道数据进行分解,并提取18维空域特征。利用相关向量机(Relevance Vector Machine,RVM)分类器对30维时-频-空域特征进行特征选择和分类识别,在自动确定最优分类特征的同时获得理想的分类结果。基于BCI竞赛数据开展实验,结果表明,所提方法可以获得优于95%的正确分类性能,并且在低信噪比条件下具有较强的噪声稳健性。 展开更多
关键词 脑电信号分类 局部均值分解 共空间模式 特征提取 特征分类
在线阅读 下载PDF
运动想象脑电信号特征提取与分类算法研究 被引量:4
7
作者 马也 常天庆 郭理彬 《计算机工程与应用》 CSCD 北大核心 2017年第16期149-154,共6页
针对运动想象脑电信号特征提取困难,分类正确率低的问题,提出了利用小波熵进行特征提取并采用支持向量机(SVM)来分类的算法。计算运动想象脑电信号的功率,通过理论分析选择小波包尺度,对信号功率进行小波包分解并计算其小波包熵(WPE),提... 针对运动想象脑电信号特征提取困难,分类正确率低的问题,提出了利用小波熵进行特征提取并采用支持向量机(SVM)来分类的算法。计算运动想象脑电信号的功率,通过理论分析选择小波包尺度,对信号功率进行小波包分解并计算其小波包熵(WPE),提取C3、C4导联的小波包熵插值组成特征向量,将特征向量作为分类器的输入送入支持向量机进行分类。采用国际BCI竞赛2003中的Graz数据进行验证,算法的最高分类正确率达97.56%。算法特征向量维数低、数据量小、分类正确率高,对运动想象脑电信号特征提取及分类的任务可以提供参考方法。 展开更多
关键词 小波包熵 支持向量机 脑电信号分类
在线阅读 下载PDF
离散差分模块在癫痫脑电分类中的应用 被引量:7
8
作者 潘奕竹 沈娜 《电子测量技术》 北大核心 2021年第1期70-75,共6页
针对癫痫脑电信号多分类的精度提升问题,提出了一种基于信号转差分模块与卷积模块结合的分类算法。信号转差分模块对原始脑电信号进行多阶差分运算,得到描述其波动特征的差分表示;然后卷积模块动态学习的方式将差分脑电信号转换为图片,... 针对癫痫脑电信号多分类的精度提升问题,提出了一种基于信号转差分模块与卷积模块结合的分类算法。信号转差分模块对原始脑电信号进行多阶差分运算,得到描述其波动特征的差分表示;然后卷积模块动态学习的方式将差分脑电信号转换为图片,利用预训练的卷积神经网络来提取信号特征并实现自动分类。分类结果表明,与现有研究相比,所提出的方法的最高提升了8.1%的分类准确率。在两分类问题上达到了99.8%的分类准确率,在三分类问题上获得了92.8%的准确率,在五分类问题上取得了86.7%的准确率。说明信号转差分模块对于脑电信号分类问题有积极作用。 展开更多
关键词 卷积神经网络 特征提取 脑电信号分类 多阶差分
在线阅读 下载PDF
可穿戴脑电图设备关键技术及其应用综述 被引量:5
9
作者 秦静 孙法莉 +3 位作者 HUI Fang 汪祖民 高兵 季长清 《计算机应用》 CSCD 北大核心 2022年第4期1029-1035,共7页
可穿戴脑电图(EEG)设备是一种用于日常实时监测的无线EGG系统,因其便携性、实时性、无创性及低成本等优势迅速发展并得到广泛应用。该系统主要由信号采集模块、信号处理模块、微控制模块、通信模块及电源模块等硬件部分以及移动终端模... 可穿戴脑电图(EEG)设备是一种用于日常实时监测的无线EGG系统,因其便携性、实时性、无创性及低成本等优势迅速发展并得到广泛应用。该系统主要由信号采集模块、信号处理模块、微控制模块、通信模块及电源模块等硬件部分以及移动终端模块和云存储模块等软件部分组成。就可穿戴EEG设备关键技术进行论述。首先,阐述了对EGG信号采集模块的改进,另外对可穿戴EEG设备信号预处理模块、信号的降噪、伪影处理及特征提取技术进行比较;然后,对机器学习、深度学习分类算法的优缺点进行分析,并对穿戴式EEG设备的应用领域进行总结;最后,提出可穿戴EEG设备的关键技术未来的发展趋势。 展开更多
关键词 可穿戴电图设备 实时监测 电信号采集 电信号处理 脑电信号分类
在线阅读 下载PDF
“噪声标签”下的运动想象多尺度时空特征学习
10
作者 刘卓恒 杨丰 詹长安 《数据采集与处理》 北大核心 2025年第3期821-831,共11页
在运动想象脑电信号采集过程中,因受试者注意力不集中而未严格遵从提示进行对应的运动想象,导致所采集脑电数据与提示(标签)不一致,即出现“噪声标签”,降低了模型捕捉关键特征的能力,影响模型在新受试者上的泛化。基于此,本文提出一种... 在运动想象脑电信号采集过程中,因受试者注意力不集中而未严格遵从提示进行对应的运动想象,导致所采集脑电数据与提示(标签)不一致,即出现“噪声标签”,降低了模型捕捉关键特征的能力,影响模型在新受试者上的泛化。基于此,本文提出一种“噪声标签”下多尺度时空特征学习的运动想象分类方法。首先,采用卷积神经网络提取脑电信号多尺度局部时间特征,降低个体间差异性影响;其次,在时空维度上分块划分特征图,作为Transformer模块输入,利用时空特征融合模块,优化全局时空特征;最后,引入对称交叉熵损失,将交叉熵计算方式扩展到所有类别,降低“噪声标签”的影响。在PhysioNet和BCI IV 2a运动想象数据集上的实验结果表明,本文方法的平均准确率优于其他方法,其中在PhysioNet数据集上引入对称交叉熵损失,二、三和四分类的平均准确率分别提升0.09%、0.65%和0.66%。此外,在不同比例的“噪声标签”干扰下,无需增加模型参数量和计算量,对称交叉熵损失就能改善模型的分类性能与鲁棒性。 展开更多
关键词 运动想象 脑电信号分类 TRANSFORMER 对称交叉熵损失 机接口
在线阅读 下载PDF
AFBCNet:一种基于自适应滤波器组的运动想象卷积神经网络 被引量:1
11
作者 申佳华 代成龙 李光辉 《传感技术学报》 CAS CSCD 北大核心 2023年第11期1714-1723,共10页
脑电图(EEG)的解码与分类一直是脑-机接口技术(BCI)领域的研究热点之一。虽然基于深度学习的方法已经取得了相当优异的成绩,但是在多分类、小样本数据集上,设计一个可解释性高、学习快、解码准确且精度高的模型仍然是一个挑战。为了深... 脑电图(EEG)的解码与分类一直是脑-机接口技术(BCI)领域的研究热点之一。虽然基于深度学习的方法已经取得了相当优异的成绩,但是在多分类、小样本数据集上,设计一个可解释性高、学习快、解码准确且精度高的模型仍然是一个挑战。为了深度解码基于运动想象(MI)的EEG信号,提出了一种基于自适应滤波器组的运动想象卷积神经网络:AFBCNet。首先通过自适应滤波器组与空间卷积层对MI-EEG信号的最优频带组合进行时空分解,然后通过改进的轻量化Inception模块进行特征提取,最后进行特征整合与分类。实验结果表明,所提出的方法在BCICIV_2a和BCICIV_2b数据集上平均识别率达到81.82%和84.13%,并且具有良好的鲁棒性与迁移能力。 展开更多
关键词 脑电信号分类 自适应滤波器组 时空分解 卷积神经网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部