期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
自校准首脉冲时间编码神经元模型 被引量:1
1
作者 冯忍 陈云华 +1 位作者 熊志民 陈平华 《计算机科学》 CSCD 北大核心 2024年第3期244-250,共7页
由于脉冲神经元具有复杂的时空动力过程且脉冲信息不可导,脉冲神经网络(SNN)的训练一直是一个难题。基于人工神经网络(ANN)转SNN间接训练深度SNN的方法,避免了直接训练深度SNN的难题,但该方法所获得的SNN的性能在很大程度上会受到脉冲... 由于脉冲神经元具有复杂的时空动力过程且脉冲信息不可导,脉冲神经网络(SNN)的训练一直是一个难题。基于人工神经网络(ANN)转SNN间接训练深度SNN的方法,避免了直接训练深度SNN的难题,但该方法所获得的SNN的性能在很大程度上会受到脉冲信息编码机制的影响。在众多编码机制中,首脉冲时间编码(TTFS)具有良好的生物学基础和更高的能效,但现有TTFS编码采用单脉冲形式,信息表征能力较弱,编码所需时间窗较大。为此,在TTFS的单脉冲编码基础上,增加一个校准脉冲,形成一种自校准首脉冲时间(SC-TTFS)编码机制,并构建相应的SC-TTFS神经元模型。在SC-TTFS中,首脉冲为必定发放的脉冲,而校准脉冲根据首脉冲发放后剩余的膜电位来确定是否发放,用于对编码脉冲所引起的转换量化误差和截断误差进行补偿,同时缩小编码所需的时间窗。通过对多种编码对应的转换误差进行对比分析,以及在多种网络结构上进行ANN-SNN转换实验,验证了所提方法的优越性。采用CIFAR10和CIFAR100数据集,基于VGG和ResNet两种网络结构进行了实验验证。结果表明,所提方法在两类网络结构和两种数据集上均实现了精度无损的ANN-SNN转换,且相较于最先进的同类方法,所提方法所构建的SNN具有最短的网络推理延迟。另外,在VGG结构上,所提方法相比TTFS编码能源效率提升了约80%。 展开更多
关键词 脉冲神经网络 脉冲编码机制 ANN-SNN转化
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部