期刊文献+
共找到576篇文章
< 1 2 29 >
每页显示 20 50 100
多注意力残差脉冲神经网络的接地网故障诊断 被引量:2
1
作者 闫孝姮 丁一凡 +1 位作者 陈伟华 张雪 《电子测量与仪器学报》 北大核心 2025年第3期77-91,共15页
针对目前接地网故障诊断方法效果单一与非智能化的问题,提出了一种多注意力残差脉冲神经网络(MAR-SNN)的接地网故障诊断方法。首先,创建用于训练的接地网数据集,通过对电阻抗成像技术(EIT)网格大小的重新剖分,提高成像速度,并利用局部... 针对目前接地网故障诊断方法效果单一与非智能化的问题,提出了一种多注意力残差脉冲神经网络(MAR-SNN)的接地网故障诊断方法。首先,创建用于训练的接地网数据集,通过对电阻抗成像技术(EIT)网格大小的重新剖分,提高成像速度,并利用局部自适应对比度增强方法,增强不同故障等级间的图像特征;其次,利用所提出的多注意力脉冲残差块,构建MAR-SNN模型,实现对接地网故障等级的识别任务,该残差模块通过在两次脉冲神经元后进行身份映射,同时引入多注意力机制,并采用参数-泄露-积分-触发脉冲神经元与批归一化层,分别提升模型识别准确率;最后,利用EIT与训练好的MAR-SNN模型,建立对接地网故障的智能诊断模型。模型对比分析结果表明,MAR-SNN在接地网智能故障诊断中的效果优于现有先进模型,在测试集中准确率可达96.31%,其中在轻、中腐蚀程度下的准确率可达100%、97.20%;同时实验结果证明,所提方法可以完成对接地网故障检测与等级识别的综合诊断任务,实现对接地网的智能故障诊断,验证了该方法的有效性与可行性。 展开更多
关键词 接地网智能故障诊断 多注意力残差 脉冲神经网络 电阻抗成像技术 对比度增强
在线阅读 下载PDF
基于脉冲神经网络优化的动态图链路预测 被引量:1
2
作者 闫钦与 卜凡亮 王一帆 《科学技术与工程》 北大核心 2025年第4期1522-1528,共7页
动态图链路预测通过图上的历史交互预测未来节点间链路的形成或消失。为减少基于循环神经网络建模网络动态的方法在细粒度时间的动态图上具有较高能耗的问题,提出一种基于脉冲神经网络优化的动态图链路预测模型,通过融合脉冲神经网络的... 动态图链路预测通过图上的历史交互预测未来节点间链路的形成或消失。为减少基于循环神经网络建模网络动态的方法在细粒度时间的动态图上具有较高能耗的问题,提出一种基于脉冲神经网络优化的动态图链路预测模型,通过融合脉冲神经网络的节点记忆更新模块,脉冲化节点记忆的更新过程,训练图神经网络学习动态图的演化动态并实现链路预测。在3个公开经典数据集上的结果表明,模型在运行速度上得到提升,并保留了准确性,在动态图链路预测任务中具有较好的性能表现。 展开更多
关键词 动态图 链路预测 神经网络 脉冲神经网络
在线阅读 下载PDF
基于类脑脉冲神经网络的边缘联邦持续学习方法
3
作者 王冬芝 刘琰 +1 位作者 郭斌 於志文 《计算机科学》 北大核心 2025年第3期326-337,共12页
移动边缘计算因具有通信成本低、服务响应快等优势,已经成为适应智能物联网应用需求的重要计算模式。在实际应用场景中,一方面,单一设备能够获取到的数据通常有限;另一方面,边缘计算环境通常是动态多变的。针对以上问题,主要对边缘联邦... 移动边缘计算因具有通信成本低、服务响应快等优势,已经成为适应智能物联网应用需求的重要计算模式。在实际应用场景中,一方面,单一设备能够获取到的数据通常有限;另一方面,边缘计算环境通常是动态多变的。针对以上问题,主要对边缘联邦持续学习展开研究,将脉冲神经网络(SNN)创新性地引入到边缘联邦持续学习框架中,在降低设备计算和通信资源消耗的同时,解决本地设备在动态边缘环境中所面临的灾难性遗忘问题。利用SNN解决边缘联邦持续学习问题主要面临两个方面的挑战:首先,传统脉冲神经网络没有考虑持续增加的输入数据,难以在较长的时间跨度内存储和更新知识,导致无法实现有效的持续学习;其次,不同设备学习到的SNN模型存在差异,通过传统联邦聚合获得的全局模型无法在每个边缘设备上取得较好的性能。因此,提出了一种新的脉冲神经网络增强的边缘联邦持续学习(SNN-Enhanced Edge-FCL)方法。针对挑战一,提出了面向边缘设备的类脑持续学习算法,在单个设备上采用类脑脉冲神经网络进行本地训练,同时采用基于羊群效应的样本选择策略保存历史任务的代表样本;针对挑战二,提出了多设备协同的全局自适应聚合算法,基于SNN工作原理设计脉冲数据质量指标,并利用数据驱动的动态加权聚合方法,在全局模型聚合时对不同设备模型赋予相应权重以提升全局模型的泛化性。实验结果表明,相比基于传统神经网络的边缘联邦持续学习方法,SNN-Enhanced Edge-FCL方法在边缘设备上消耗的通信资源和计算资源减少了92%,且边缘设备在测试集上5个连续任务中的准确率都在87%以上。 展开更多
关键词 移动边缘计算 资源受限 灾难性遗忘 联邦学习 持续学习 类脑脉冲神经网络
在线阅读 下载PDF
大规模脉冲神经网络动态加载仿真方法
4
作者 沈嘉玮 才大业 +2 位作者 杨国青 吕攀 李红 《系统仿真学报》 北大核心 2025年第2期541-550,共10页
针对大规模脉冲神经网络仿真时存在GPU内存需求高的问题,提出一种针对大规模脉冲神经网络的动态加载仿真方法。通过子网络粒度的数据移动,利用主机内存作为更大的内存池,减少GPU显存对于模型仿真规模的限制,实现在单GPU的计算机进行大... 针对大规模脉冲神经网络仿真时存在GPU内存需求高的问题,提出一种针对大规模脉冲神经网络的动态加载仿真方法。通过子网络粒度的数据移动,利用主机内存作为更大的内存池,减少GPU显存对于模型仿真规模的限制,实现在单GPU的计算机进行大规模脉冲神经网络仿真,并使用流水线加速技术减少数据移动对仿真速度的影响。最终实现了在单机GPU的实验环境下仿真百万级别神经元规模的仿真,解决了在脉冲神经网络仿真过程中内存不足的问题。 展开更多
关键词 类脑计算 脉冲神经网络 神经 突触 仿真
在线阅读 下载PDF
脉冲神经网络基准测试及类脑训练框架性能评估
5
作者 胡汪鑫 成英超 +2 位作者 何玉林 黄哲学 蔡占川 《应用科学学报》 北大核心 2025年第1期169-182,共14页
随着脉冲神经网络(spiking neural network,SNN)研究需求的不断增长,开源类脑训练框架也迅速发展。然而,目前缺乏针对这些框架的系统性选择指南。为了解决该问题,提出了一种基于图像分类任务的SNN基准测试方法。本文为两种SNN训练方法,... 随着脉冲神经网络(spiking neural network,SNN)研究需求的不断增长,开源类脑训练框架也迅速发展。然而,目前缺乏针对这些框架的系统性选择指南。为了解决该问题,提出了一种基于图像分类任务的SNN基准测试方法。本文为两种SNN训练方法,即直接替代梯度反向传播训练方法以及从人工神经网络(artificial neural network,ANN)到SNN的转换训练方法分别设计了卷积神经网络和全连接深度神经网络模型,并使用MNIST、FashionMNIST和CIFAR-10基准图像数据集,以训练时间和分类准确率为评估指标,比较了不同类脑训练框架的性能差异。研究结果表明,在SNN直接训练中,类脑训练框架SpikingJelly在训练时间和分类准确率方面均表现优异;而在ANN到SNN的转换训练中,Lava框架实现了最高的分类准确率。 展开更多
关键词 深度学习 脉冲神经网络 类脑训练框架 基准测试 图像分类
在线阅读 下载PDF
基于小脑脉冲神经网络的柔性机械臂运动控制
6
作者 张透明 韩芳 王青云 《力学学报》 北大核心 2025年第4期997-1007,共11页
柔性机械臂由于自身材料的柔软特性,极容易受到环境中的不确定性干扰,从而发生意外形变,影响控制精度.针对该情况,借鉴人体中小脑对运动的调控和对环境的适应性,搭建了小脑脉冲神经网络模型,用于对柔性机械臂在环境干扰下的运动行为进... 柔性机械臂由于自身材料的柔软特性,极容易受到环境中的不确定性干扰,从而发生意外形变,影响控制精度.针对该情况,借鉴人体中小脑对运动的调控和对环境的适应性,搭建了小脑脉冲神经网络模型,用于对柔性机械臂在环境干扰下的运动行为进行纠正控制.首先,基于分段常曲率方法建立了一个多自由度柔性机械臂模型,它具有移动关节和旋转关节,可以实现伸缩和弯曲的运动行为;并采用顺序二次规划算法近似计算得到机械臂的逆运动学模型,从而求解与期望轨迹对应的期望关节参数.然后,借鉴小脑皮层的神经系统结构与自适应功能,对颗粒层与浦肯野细胞层之间的突触可塑性进行建模,完整构建了小脑脉冲神经网络模型.最后,研究了环境干扰下柔性机械臂完成圆形轨迹和“8”字形轨迹的运动效果,发现与不使用小脑模型的直接开环控制运动结果相比,柔性机械臂末端执行器在小脑脉冲神经网络控制下的轨迹误差分别降低了95%和96%,验证了小脑脉冲神经网络模型对于控制柔性机械臂对抗不确定性干扰的有效性.相较于传统的控制方法,该方法更具有生物可解释性,为柔性机械臂在不确定性扰动下的控制提供了一种类脑智能方法. 展开更多
关键词 小脑 柔性机械臂 脉冲神经网络 适应性
在线阅读 下载PDF
基于自适应替代梯度和阈值脉冲池化的脉冲神经网络
7
作者 吕兆麟 梁正友 +1 位作者 孙宇 浦斌 《小型微型计算机系统》 北大核心 2025年第6期1326-1332,共7页
脉冲神经网络(SNN)与传统人工神经网络(ANN)相比具有更好的生物可解释性和更低的能耗,并被认为是扩展神经网络应用领域的一种极有前景的解决方案.但由于不能直接使用梯度下降算法来训练SNN,因此SNN在模型性能上仍与ANN存有一定的差距,... 脉冲神经网络(SNN)与传统人工神经网络(ANN)相比具有更好的生物可解释性和更低的能耗,并被认为是扩展神经网络应用领域的一种极有前景的解决方案.但由于不能直接使用梯度下降算法来训练SNN,因此SNN在模型性能上仍与ANN存有一定的差距,这限制了SNN的实际应用.为此提出一种新型自适应替代梯度方法(ASG)以更好地将梯度下降算法应用在SNN的训练上;还提出一种阈值脉冲池化结构(TSPooling)以提升模型表达能力,从而使训练后的SNN模型在保持低能耗特性的同时拥有更好的推理性能.使用所提出的方法训练改进ResNet-18网络模型,在CIFAR-100数据集和CIFAR10-DVS数据集上进行实验,识别结果较基准网络模型有明显提升,改进的模型在CIFAR-100数据集上的准确率达到了76.41%,优于其他6个主流模型,验证了其有效性. 展开更多
关键词 脉冲神经网络 神经形态计算 替代梯度 脉冲编码
在线阅读 下载PDF
基于速率编码的极低延迟深度脉冲神经网络研究
8
作者 熊志民 陈云华 +1 位作者 冯忍 陈平华 《控制理论与应用》 北大核心 2025年第3期531-540,共10页
脉冲神经网络(SNN)具有强大的时空信息表征、异步事件处理能力,但由于脉冲发放过程不具有连续可微性,其训练是一个难题.人工神经网络(ANN)转SNN的方法,能够获得较高推理精度的深度SNN,但却存在SNN网络延迟和功耗过高的问题.为了降低网... 脉冲神经网络(SNN)具有强大的时空信息表征、异步事件处理能力,但由于脉冲发放过程不具有连续可微性,其训练是一个难题.人工神经网络(ANN)转SNN的方法,能够获得较高推理精度的深度SNN,但却存在SNN网络延迟和功耗过高的问题.为了降低网络延迟和功耗,本文从脉冲信息传递的异步特性入手,分析了极低延迟下SNN精度损失的主要原因,提出残余膜电位误差(RMPE)的概念,并对其进行分析与推导,建立残余膜电位与初始膜电位和权重之间的关系模型.基于所建立的残余膜电位模型,提出一种初始膜电位和权重的分层校准算法,减少残余膜电位误差,从而解决脉冲输入序列均匀分布假设与真实分布不一致的问题.提出一种ANN-SNN的双阶段转化框架,在第1阶段,采用带有可训练分层阈值的量化截断激活函数对ANN进行二次训练,以实现量化误差与截断误差的最优化;在第2阶段,对SNN进行微调训练,以进一步缩小残余膜电位误差,使得在极低延迟下的ANN-SNN转化也能获得较高的精度.实验结果表明,本文方法在推理延迟和功耗方面都优于现有的方法. 展开更多
关键词 脉冲神经网络 ANN-SNN转化 速率编码
在线阅读 下载PDF
基于突触可塑性延迟和时间注意力的脉冲神经网络及其语音识别应用
9
作者 张航铭 白千一 +2 位作者 邓智超 Alexander Sboev 于强 《计算机学报》 北大核心 2025年第8期1870-1884,共15页
脉冲神经网络(Spiking Neural Networks,SNNs)是一种受大脑启发的计算模型,在处理具有时间和空间维度的数据时具有巨大潜力。研究表明,突触可塑性延迟能够提高SNNs在语音识别等时序任务的性能。然而,时序数据通常具有稀疏性和不均匀性,... 脉冲神经网络(Spiking Neural Networks,SNNs)是一种受大脑启发的计算模型,在处理具有时间和空间维度的数据时具有巨大潜力。研究表明,突触可塑性延迟能够提高SNNs在语音识别等时序任务的性能。然而,时序数据通常具有稀疏性和不均匀性,导致不同时间步中的信息分布存在显著差异。同时,信号中噪声的动态变化进一步加剧了这一问题,使得现有的可塑性延迟方法难以有效捕获关键时间信息,从而限制了模型性能的提升。在这项工作中,我们为可塑性延迟引入了时间注意力机制,通过动态评估各时间步的重要性,进而优化SNNs的性能。具体而言,我们使用扩展卷积来学习延迟和权重。随后,我们在时间维度上利用时间注意力机制动态量化不同时间步的重要性,从而增强模型对关键时间信息的捕获能力。实验结果表明,所提方法在Spiking Heidelberg Digits、Spiking Speech Command和Google Speech Commands数据集上分别取得了96.21%、80.87%和95.60%的精度,相较于传统的可塑性延迟方法有了显著的改进。这一结果验证了我们的方法在处理语音识别任务时的高效性,并为SNNs在处理复杂时序数据中的进一步应用奠定了坚实基础。 展开更多
关键词 类脑计算 脉冲神经网络 突触可塑性延迟 时间注意力 神经形态计算
在线阅读 下载PDF
神经形态计算:从脉冲神经网络到边缘部署
10
作者 俞诗航 易梦军 +2 位作者 吴洲 申富饶 赵健 《软件学报》 北大核心 2025年第4期1758-1795,共38页
受生物神经系统启发,神经形态计算的概念于20世纪80年代被提出,旨在模拟生物大脑的结构和功能,实现更高效、更具生物合理性的计算方式.作为神经形态计算的代表模型,脉冲神经网络(SNN)因其脉冲稀疏性,事件驱动性、生物可解释性以及硬件... 受生物神经系统启发,神经形态计算的概念于20世纪80年代被提出,旨在模拟生物大脑的结构和功能,实现更高效、更具生物合理性的计算方式.作为神经形态计算的代表模型,脉冲神经网络(SNN)因其脉冲稀疏性,事件驱动性、生物可解释性以及硬件契合性等优势,在资源严格受限的边缘智能任务中得到了广泛应用.针对脉冲神经网络的边缘部署情况进行梳理和汇总,首先从脉冲神经网络模型自身的原理出发,论述脉冲神经网络的高能效计算方式以及巨大的边缘部署潜力.然后介绍当下常见的脉冲神经网络硬件实现工具链,并重点对脉冲神经网络在各类神经形态硬件平台的部署情况做详细的整理与分析.最后,考虑到硬件故障行为已发展为当下研究中不可避免的问题,对脉冲神经网络边缘部署时的故障与容错研究进行概述.从软件模型原理到硬件平台实现,全面系统地介绍神经形态计算的最新进展,分析脉冲神经网络边缘部署时遇到的困难与挑战,并针对这些挑战给出未来可能的解决方向. 展开更多
关键词 神经网络 脉冲神经网络 神经形态计算 边缘智能
在线阅读 下载PDF
跨脉冲传播的深度脉冲神经网络训练方法
11
作者 曾建新 陈云华 +1 位作者 李炜奇 陈平华 《计算机应用研究》 CSCD 北大核心 2024年第7期2134-2140,共7页
基于反向传播的脉冲神经网络(SNNs)的训练方法仍面临着诸多问题与挑战,包括脉冲发放过程不可微分、脉冲神经元具有复杂的时空动力过程等。此外,SNNs反向传播训练方法往往没有考虑误差信号在相邻脉冲间的关系,大大降低了网络模型的准确... 基于反向传播的脉冲神经网络(SNNs)的训练方法仍面临着诸多问题与挑战,包括脉冲发放过程不可微分、脉冲神经元具有复杂的时空动力过程等。此外,SNNs反向传播训练方法往往没有考虑误差信号在相邻脉冲间的关系,大大降低了网络模型的准确性。为此,提出一种跨脉冲误差传播的深度脉冲神经网络训练方法(cross-spike error backpropagation,CSBP),将神经元的误差反向传播分成脉冲发放时间随突触后膜电位变化关系和相邻脉冲发放时刻点间的依赖关系两种依赖关系。其中,通过前者解决了脉冲不可微分的问题,通过后者明确了脉冲间的依赖关系,使得误差信号能跨脉冲传播,提升了生物合理性。此外,并对早期脉冲残差网络架构存在的模型表示能力不足问题进行研究,通过修改脉冲残余块的结构顺序,进一步提高了网络性能。实验结果表明,所提方法比基于脉冲时间的最优训练算法有着明显的提升,相同架构下,在CIFAR10数据集上提升2.98%,在DVS-CIFAR10数据集上提升2.26%。 展开更多
关键词 脉冲神经网络 脉冲时间依赖 误差反向传播 脉冲神经网络训练算法
在线阅读 下载PDF
基于脉冲序列标识的深度脉冲神经网络时空反向传播算法 被引量:2
12
作者 王子华 叶莹 +3 位作者 刘洪运 许燕 樊瑜波 王卫东 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第6期2596-2604,共9页
尖峰放电的脉冲神经网络(SNN)具有接近大脑皮层的信号处理模式,被认为是实现大脑启发计算的重要途径。但是,目前对于深度脉冲神经网络的学习仍缺乏有效的监督学习算法。受尖峰放电速率标识的时空反向传播算法的启发,该文提出一种面向深... 尖峰放电的脉冲神经网络(SNN)具有接近大脑皮层的信号处理模式,被认为是实现大脑启发计算的重要途径。但是,目前对于深度脉冲神经网络的学习仍缺乏有效的监督学习算法。受尖峰放电速率标识的时空反向传播算法的启发,该文提出一种面向深度脉冲神经网络训练的基于时间脉冲序列标识的监督学习算法,通过定义突触后电位和膜电位反传迭代因子分别分析脉冲神经元的空间和时间依赖关系,使用替代梯度的方法解决反传过程中不连续可微的问题。不同于现有基于尖峰放电速率标识的学习算法,该算法能够充分反映脉冲神经网络输出的时间脉冲序列的动态特性。因此,所提算法非常适合应用于需要较长时间序列标识的计算任务,例如行为的时间脉冲序列控制。该文在静态图像数据集CIFAR10和神经形态数据集NMNIST上验证了所提算法的有效性,在所有这些数据集上都显示出良好的性能,这有助于进一步研究基于时间脉冲序列应用的大脑启发计算。 展开更多
关键词 脉冲神经网络 监督学习 误差反向传播 时间脉冲序列标识 替代梯度
在线阅读 下载PDF
一种基于SOM与脉冲神经网络的音频识别方法 被引量:2
13
作者 隆二红 王刚 莫凌飞 《传感技术学报》 CAS CSCD 北大核心 2024年第11期1885-1892,共8页
近年来,在人工神经网络技术的推动下,音频分类技术不断提高。然而,传统人工神经网络存在计算功耗大、时域信号处理困难等问题。脉冲神经网络由于其事件驱动的特性,有着低功耗、可解释、时域处理能力强等特点,非常适用于音频信号处理任... 近年来,在人工神经网络技术的推动下,音频分类技术不断提高。然而,传统人工神经网络存在计算功耗大、时域信号处理困难等问题。脉冲神经网络由于其事件驱动的特性,有着低功耗、可解释、时域处理能力强等特点,非常适用于音频信号处理任务。提出一种基于SOM时空特征稀疏编码和SNN有监督分类的音频识别方法,利用MFCC进行时-频域转换后,再利用SOM实现对时间序列音频信号的稀疏编码,不同于其他基于误差反向传播的有监督学习,利用带积分的STDP学习规则训练权重,并且通过使用兴奋抑制双监督训练方法,可以使得SNN有效提取和分析音频信号中的空间特征与时间特征,最终所提方法在TIDIGITS数字音频数据集上取得了96.47%的分类准确度。 展开更多
关键词 脉冲神经网络 音频识别 SOM时空特征稀疏编码 兴奋抑制双监督训练 低功耗
在线阅读 下载PDF
基于自适应时间步脉冲神经网络的高效图像分类 被引量:1
14
作者 李千鹏 贾顺程 +1 位作者 张铁林 陈亮 《自动化学报》 EI CAS CSCD 北大核心 2024年第9期1724-1735,共12页
脉冲神经网络(Spiking neural network,SNN)由于具有相对人工神经网络(Artifcial neural network,ANN)更低的计算能耗而受到广泛关注.然而,现有SNN大多基于同步计算模式且往往采用多时间步的方式来模拟动态的信息整合过程,因此带来了推... 脉冲神经网络(Spiking neural network,SNN)由于具有相对人工神经网络(Artifcial neural network,ANN)更低的计算能耗而受到广泛关注.然而,现有SNN大多基于同步计算模式且往往采用多时间步的方式来模拟动态的信息整合过程,因此带来了推理延迟增大和计算能耗增高等问题,使其在边缘智能设备上的高效运行大打折扣.针对这个问题,本文提出一种自适应时间步脉冲神经网络(Adaptive timestep improved spiking neural network,ATSNN)算法.该算法可以根据不同样本特征自适应选择合适的推理时间步,并通过设计一个时间依赖的新型损失函数来约束不同计算时间步的重要性.与此同时,针对上述ATSNN特点设计一款低能耗脉冲神经网络加速器,支持ATSNN算法在VGG和ResNet等成熟框架上的应用部署.在CIFAR10、CIFAR100、CIFAR10-DVS等标准数据集上软硬件实验结果显示,与当前固定时间步的SNN算法相比,ATSNN算法的精度基本不下降,并且推理延迟减少36.7%~58.7%,计算复杂度减少33.0%~57.0%.在硬件模拟器上的运行结果显示,ATSNN的计算能耗仅为GPU RTX 3090Ti的4.43%~7.88%.显示出脑启发神经形态软硬件的巨大优势. 展开更多
关键词 脉冲神经网络 低功耗推理 高效训练 低延迟
在线阅读 下载PDF
用于双阈值脉冲神经网络的改进自适应阈值算法 被引量:3
15
作者 王浩杰 刘闯 《计算机应用研究》 CSCD 北大核心 2024年第1期177-182,187,共7页
脉冲神经网络(spiking neural network, SNN)由于在神经形态芯片上低功耗和高速计算的独特性质而受到广泛的关注。深度神经网络(deep neural network, DNN)到SNN的转换方法是有效的脉冲神经网络训练方法之一,然而从DNN到SNN的转换过程... 脉冲神经网络(spiking neural network, SNN)由于在神经形态芯片上低功耗和高速计算的独特性质而受到广泛的关注。深度神经网络(deep neural network, DNN)到SNN的转换方法是有效的脉冲神经网络训练方法之一,然而从DNN到SNN的转换过程中存在近似误差,转换后的SNN在短时间步长下遭受严重的性能退化。通过对转换过程中的误差进行详细分析,将其分解为量化和裁剪误差以及不均匀误差,提出了一种改进SNN阈值平衡的自适应阈值算法。通过使用最小化均方误差(MMSE)更好地平衡量化误差和裁剪误差;此外,基于IF神经元模型引入了双阈值记忆机制,有效解决了不均匀误差。实验结果表明,改进算法在CIFAR-10、CIFAR-100数据集以及MIT-BIH心律失常数据库上取得了很好的性能,对于CIFAR10数据集,仅用16个时间步长就实现了93.22%的高精度,验证了算法的有效性。 展开更多
关键词 脉冲神经网络 高精度转换 双阈值记忆神经 自适应阈值
在线阅读 下载PDF
基于脉冲神经网络的轻量化SAR图像舰船识别算法 被引量:1
16
作者 谢洪途 陈佳兴 +1 位作者 张琳 朱楠楠 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第4期474-482,共9页
针对传统方法进行合成孔径雷达(SAR)图像目标识别存在参数多、能耗高等问题,提出了一种基于脉冲神经网络(SNN)的轻量化SAR图像舰船识别算法.首先,利用视觉注意力机制提取SAR图像视觉显著图,采用泊松编码器进行脉冲序列编码,能抑制背景... 针对传统方法进行合成孔径雷达(SAR)图像目标识别存在参数多、能耗高等问题,提出了一种基于脉冲神经网络(SNN)的轻量化SAR图像舰船识别算法.首先,利用视觉注意力机制提取SAR图像视觉显著图,采用泊松编码器进行脉冲序列编码,能抑制背景噪声干扰.然后,结合泄漏整合发射(LIF)脉冲神经元和卷积神经网络,构建融合时序信息的SNN模型,能实现SAR图像舰船识别.最后,采用反正切函数作为反向传播时脉冲发射函数的梯度替代函数对SNN模型进行优化,能解决模型难以训练的问题.实验结果表明所提算法具有高精度、少参数、高效率和低能耗等优势,能实现SAR图像高效准确舰船识别. 展开更多
关键词 合成孔径雷达图像 舰船识别 脉冲神经网络 轻量化
在线阅读 下载PDF
基于多子网络预训练的脉冲神经网络分类模型 被引量:1
17
作者 卓明松 莫凌飞 《计算机科学》 CSCD 北大核心 2024年第S02期33-38,共6页
脉冲神经网络(Spiking Neural Network,SNN)被认为是最符合生物大脑机制的类脑计算模型,凭借其事件驱动、高能效、可解释等特点吸引了越来越多的研究关注。然而,由于脉冲的二值输出与不可微分性,SNN的训练方法仍存在一定空缺。于是借鉴... 脉冲神经网络(Spiking Neural Network,SNN)被认为是最符合生物大脑机制的类脑计算模型,凭借其事件驱动、高能效、可解释等特点吸引了越来越多的研究关注。然而,由于脉冲的二值输出与不可微分性,SNN的训练方法仍存在一定空缺。于是借鉴皮层记忆单元通过局部网络存储记忆信息的方式,提出一种基于多子网络预训练的脉冲神经网络分类方法。该方法使用样本标签信息优化了脉冲序列特征提取过程,采用改进的脉冲时间依赖可塑性学习规则预训练多个单类别特征提取子网络,并将预训练后的子网络进行无监督特征融合,有效提高了网络的特征分类能力。此外,在权重可视化与t-SNE可视化工具的帮助下,分析了方法的有效性。所提方法在MNIST与Fashion-MNIST数据集上分别取得了97.40%与88.81%的分类准确度。 展开更多
关键词 脉冲神经网络 脉冲时间依赖可塑性 单类别特征提取子网络 无监督特征融合 类脑计算
在线阅读 下载PDF
基于坐标注意力脉冲神经网络的注视估计方法
18
作者 王红霞 赵志国 《计量学报》 CSCD 北大核心 2024年第7期982-988,共7页
针对传统相机在拍摄人眼运动时易产生动态模糊、时间分辨率低等问题,采用事件相机近眼拍摄构建Spiking-Eye数据集,并提出一种坐标注意力的脉冲神经网络模型(CA-SpikingRepVGG)。模型读取编码后的事件数据,经过带坐标注意力的主干网络进... 针对传统相机在拍摄人眼运动时易产生动态模糊、时间分辨率低等问题,采用事件相机近眼拍摄构建Spiking-Eye数据集,并提出一种坐标注意力的脉冲神经网络模型(CA-SpikingRepVGG)。模型读取编码后的事件数据,经过带坐标注意力的主干网络进行特征提取,最后馈入检测头进行检测。实验结果显示:CA-SpikingRepVGG的平均检测精确率R_(P)达到了70.8%,与SpikingVGG-16比较,该模型的R_(P)提高了15.9%,召回率R_(r)提高了14.2%;仅需SpikingDensenet模型1/3的训练时间,比其R_(P)提高1.8%、R_(r)提高0.9%。结果表明:该模型在针对眼球运动这一场景下对人眼的检测追踪能力更强,可以很好地完成注视估计任务。 展开更多
关键词 机器视觉 目标检测 脉冲神经网络 注视估计 坐标注意力 召回率 事件相机
在线阅读 下载PDF
基于脉冲神经网络的智能控制研究进展
19
作者 刘晓德 郭宇飞 +1 位作者 黄旭辉 马喆 《控制理论与应用》 EI CAS CSCD 北大核心 2024年第12期2189-2206,共18页
近些年,具备低功耗、高鲁棒、融合时空信息等优势的脉冲神经网络(SNN)在类脑研究与智能控制的交叉领域方兴未艾.基于脉冲神经网络架构的智能控制方法是实现与环境自主交互并且高能效完成复杂控制任务的有效途径之一.为此,本文首先介绍了... 近些年,具备低功耗、高鲁棒、融合时空信息等优势的脉冲神经网络(SNN)在类脑研究与智能控制的交叉领域方兴未艾.基于脉冲神经网络架构的智能控制方法是实现与环境自主交互并且高能效完成复杂控制任务的有效途径之一.为此,本文首先介绍了SNN的基本要素与研究动机;然后,详细介绍了近年来基于脉冲神经网络智能控制的研究进展以及在机器人、无人车、无人机等领域的应用情况;接着,总结了一些现有的硬件平台,用以实现SNN算法的高效能实现;最后,总结展望了SNN控制发展的机遇与挑战.本文旨在梳理出SNN控制发展的技术脉络,为其快速发展提供借鉴与思路. 展开更多
关键词 脉冲神经网络 深度学习 神经网络与智能控制 神经形态计算
在线阅读 下载PDF
支持抑制型脉冲神经网络的硬件加速器
20
作者 钱平 韩睿 +4 位作者 谢凌东 罗旺 徐华荣 李松松 郑振东 《计算机工程与应用》 CSCD 北大核心 2024年第8期338-347,共10页
现有脉冲神经网络加速器的设计过多关注于硬件层面的功能完备性,缺少算法层面的相关协同优化以保证硬件计算效率。此外,传统的事件驱动型脉冲神经网络加速器没有考虑到脉冲神经元模型中普遍存在的脉冲抖动现象,因此不能实现对抑制型脉... 现有脉冲神经网络加速器的设计过多关注于硬件层面的功能完备性,缺少算法层面的相关协同优化以保证硬件计算效率。此外,传统的事件驱动型脉冲神经网络加速器没有考虑到脉冲神经元模型中普遍存在的脉冲抖动现象,因此不能实现对抑制型脉冲神经网络的支持。为解决上述问题,采用软硬件结合的方式,提出了一种支持抑制型脉冲神经网络加速器的设计方法。软件优化层面通过对脉冲神经网络计算冗余性的分析,提出了相应的近似计算方法以大幅降低脉冲神经网络的计算量;硬件设计层面提出了解决脉冲抖动问题的计算模块,并在此基础上设计了与近似计算方法相适应的并行计算结构。为验证设计的合理性,在XilinxZC706 FPGA上部署了加速器原型FEAS。在主流数据集上的测试结果显示,相较以往脉冲神经网络的加速器部署,FEAS在保持97.54%原有模型精度的情况下获得超过一个数量级的性能提升。 展开更多
关键词 脉冲神经网络 事件驱动 抑制型网络 近似计算 硬件加速器
在线阅读 下载PDF
上一页 1 2 29 下一页 到第
使用帮助 返回顶部