期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
[树]麻雀羽再生的能量预算和水代谢散热调节 被引量:7
1
作者 杨志宏 吴庆明 +1 位作者 杨渺 邹红菲 《生态学报》 CAS CSCD 北大核心 2014年第10期2617-2628,共12页
为探讨[树]麻雀的羽再生能力、能量预算对策和有效的散热调节方式,对3组(对照CF、去飞羽FF和去尾羽组TF)[树]麻雀(Passer montanus)进行4周驯养(Acclimation)。结果发现:[树]麻雀具有较强的羽再生能力和飞羽参与个体保温。羽再生[树]麻... 为探讨[树]麻雀的羽再生能力、能量预算对策和有效的散热调节方式,对3组(对照CF、去飞羽FF和去尾羽组TF)[树]麻雀(Passer montanus)进行4周驯养(Acclimation)。结果发现:[树]麻雀具有较强的羽再生能力和飞羽参与个体保温。羽再生[树]麻雀能量收支水平降低极显著(P﹤0.001),FF组和TF组比CF组减少依次为:摄入能19.77%和7.17%、消化能18.79%和6.47%、同化能18.73%和6.46%、粪能28.66%和13.35%、水代谢散热热能26.95%和7.43%、排泄次数33.71%和14.40%,增加依次为:消化率1.23%和0.78%、同化率1.35%和0.84%。个体能值水平,体重CF、TF和FF组(P﹤0.05)依次降低,体温组间变化不显著(P﹥0.05)。体内能量储备,血糖、肌糖原、体脂和水分含量组间差异不显著(P﹥0.05),肝糖原含量、体脂重组间差异显著(P﹤0.05)。器官水平包括心脏、肾脏、腺胃、小肠、盲肠和总消化道长度及质量出现积极的响应。日代谢水量组间差异极显著(P﹤0.001)。组间日排泄次数最少平均为56.11次和最多可达96.34次/只。结果表明:羽再生[树]麻雀分别选择了不同程度的降低能量收支水平,提高摄入食物的消化、吸收效率,动用体内能量储备来获取摄入能量不足部分,降低器官总能耗的能量预算对策和不同的新羽(再生羽枚数:飞羽部分和尾羽全部)再生的能量投资对策。泄殖腔排出(粪尿混合物)水是鸟类特有的、迅速的和有效的散热调节方式。 展开更多
关键词 [树]麻雀 羽再生 能量预算 水代谢 散热调节
在线阅读 下载PDF
Energy-absorption forecast of thin-walled structure by GA-BP hybrid algorithm 被引量:7
2
作者 谢素超 周辉 +1 位作者 赵俊杰 章易程 《Journal of Central South University》 SCIE EI CAS 2013年第4期1122-1128,共7页
In order to analyze the influence rule of experimental parameters on the energy-absorption characteristics and effectively forecast energy-absorption characteristic of thin-walled structure, the forecast model of GA-B... In order to analyze the influence rule of experimental parameters on the energy-absorption characteristics and effectively forecast energy-absorption characteristic of thin-walled structure, the forecast model of GA-BP hybrid algorithm was presented by uniting respective applicability of back-propagation artificial neural network (BP-ANN) and genetic algorithm (GA). The detailed process was as follows. Firstly, the GA trained the best weights and thresholds as the initial values of BP-ANN to initialize the neural network. Then, the BP-ANN after initialization was trained until the errors converged to the required precision. Finally, the network model, which met the requirements after being examined by the test samples, was applied to energy-absorption forecast of thin-walled cylindrical structure impacting. After example analysis, the GA-BP network model was trained until getting the desired network error only by 46 steps, while the single BP-ANN model achieved the same network error by 992 steps, which obviously shows that the GA-BP hybrid algorithm has faster convergence rate. The average relative forecast error (ARE) of the SEA predictive results obtained by GA-BP hybrid algorithm is 1.543%, while the ARE of the SEA predictive results obtained by BP-ANN is 2.950%, which clearly indicates that the forecast precision of the GA-BP hybrid algorithm is higher than that of the BP-ANN. 展开更多
关键词 thin-walled structure GA-BP hybrid algorithm IMPACT energy-absorption characteristic FORECAST
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部