为改善某款混联插电式混合动力汽车(plug-in hybrid electric vehicle,PHEV)的燃油经济性,针对传统模糊控制中模糊隶属函数存在主观性过强、缺乏理论支撑等问题,提出了一种新的方法来优化PHEV模糊控制能量管理策略。首先,通过构建以整...为改善某款混联插电式混合动力汽车(plug-in hybrid electric vehicle,PHEV)的燃油经济性,针对传统模糊控制中模糊隶属函数存在主观性过强、缺乏理论支撑等问题,提出了一种新的方法来优化PHEV模糊控制能量管理策略。首先,通过构建以整车的需求转矩和电池荷电状态作为输入、发动机转矩作为输出的模糊控制器,选取21个隶属度函数变量,以优化燃油经济性为目标,利用混沌方式改进麻雀搜索优化算法进行优化;然后,通过Matlab/Simulink搭建控制策略,并联合AVL Cruise平台搭建的整车模型进行仿真,验证优化模糊控制能量管理策略的有效性。仿真结果表明,在全球轻型汽车测试循环(world light vehicle test cycle,WLTC)工况下,基于混沌方式改进麻雀搜索算法优化的模糊控制能量管理策略与原始模糊控制能量管理策略相比,百公里燃油消耗减少2.1%、NO_(x)气体排放减少13.3%、CO气体排放量下降1.3%、HC气体排放量减少2.9%,有效地提高整车燃油经济性,减少污染气体排放。展开更多
文摘为改善某款混联插电式混合动力汽车(plug-in hybrid electric vehicle,PHEV)的燃油经济性,针对传统模糊控制中模糊隶属函数存在主观性过强、缺乏理论支撑等问题,提出了一种新的方法来优化PHEV模糊控制能量管理策略。首先,通过构建以整车的需求转矩和电池荷电状态作为输入、发动机转矩作为输出的模糊控制器,选取21个隶属度函数变量,以优化燃油经济性为目标,利用混沌方式改进麻雀搜索优化算法进行优化;然后,通过Matlab/Simulink搭建控制策略,并联合AVL Cruise平台搭建的整车模型进行仿真,验证优化模糊控制能量管理策略的有效性。仿真结果表明,在全球轻型汽车测试循环(world light vehicle test cycle,WLTC)工况下,基于混沌方式改进麻雀搜索算法优化的模糊控制能量管理策略与原始模糊控制能量管理策略相比,百公里燃油消耗减少2.1%、NO_(x)气体排放减少13.3%、CO气体排放量下降1.3%、HC气体排放量减少2.9%,有效地提高整车燃油经济性,减少污染气体排放。
文摘为提升并联式混合动力汽车(parallel hybrid electric vehicle,PHEV)的燃油经济性,针对等效燃油消耗最小控制策略(equivalent fuel consumption minimum strategy,ECMS)在不同工况下适应性差的问题,以优化整车等效燃油消耗量为目标,设计基于工况识别算法的变等效因子ECMS能量管理策略。选取3类典型工况建立支持向量机分类模型,通过递归特征消除法对样本特征进行选择,采用鲸鱼算法对支持向量机进行参数优化,使用模拟退火算法分别对3类工况的ECMS等效因子进行离线全局最优求解,并分别存储于等效因子库中,通过训练好的支持向量机分类器对目标优化工况进行工况识别,不同类型的工况片段采用不同的等效因子进行转矩分配。仿真结果显示:相比于逻辑门限能量管理策略,基于工况识别算法的变等效因子ECMS能量管理策略的电池荷电状态(state of charge,SOC)变化量减少8.67%,节油率为13.11%;相比于优化前的ECMS策略电池SOC变化量减少3.47%,节油率约为6.63%。本文提出的基于工况识别算法的变等效因子ECMS能量管理策略可以有效地减少燃油消耗量,提升PHEV的整车经济性。