期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
感应耦合无线电能传输系统的能量法模型及特性分析 被引量:13
1
作者 疏许健 张波 《电力系统自动化》 EI CSCD 北大核心 2017年第2期28-32,共5页
感应耦合无线电能传输(ICPT)基于电磁感应原理,目前采用电路模型的分析方法,由于该方法无法深入了解ICPT系统能量传输的过程,所以提出了一种ICPT系统的能量法建模方法,建立了串联—串联(SS)、串联—并联(SP)、并联—串联(PS)和并联—并... 感应耦合无线电能传输(ICPT)基于电磁感应原理,目前采用电路模型的分析方法,由于该方法无法深入了解ICPT系统能量传输的过程,所以提出了一种ICPT系统的能量法建模方法,建立了串联—串联(SS)、串联—并联(SP)、并联—串联(PS)和并联—并联(PP)型4种ICPT系统的能量法模型,分析了能量法模型与耦合模型的相互关系,研究了它们的等效性及数学意义上的等效条件,并通过MATLAB仿真研究,证明了理论分析的正确性。此外,目前ICPT系统与磁耦合谐振式无线电能传输(MCRWPT)系统原理相混淆,因而基于能量法模型分析了ICPT系统与MCRWPT系统在原理上的区别,得出只有在谐振、弱耦合、高品质因数的物理条件下,SS型ICPT系统才与MCRWPT系统等效,由此阐明了ICPT系统与MCRWPT系统原理上的差异性,为进一步精确设计和优化ICPT系统与MCRWPT系统设计提供了模型基础。 展开更多
关键词 无线电能传输 感应耦合 磁耦合谐振 能量法模型 耦合模型
在线阅读 下载PDF
Energy-absorption forecast of thin-walled structure by GA-BP hybrid algorithm 被引量:7
2
作者 谢素超 周辉 +1 位作者 赵俊杰 章易程 《Journal of Central South University》 SCIE EI CAS 2013年第4期1122-1128,共7页
In order to analyze the influence rule of experimental parameters on the energy-absorption characteristics and effectively forecast energy-absorption characteristic of thin-walled structure, the forecast model of GA-B... In order to analyze the influence rule of experimental parameters on the energy-absorption characteristics and effectively forecast energy-absorption characteristic of thin-walled structure, the forecast model of GA-BP hybrid algorithm was presented by uniting respective applicability of back-propagation artificial neural network (BP-ANN) and genetic algorithm (GA). The detailed process was as follows. Firstly, the GA trained the best weights and thresholds as the initial values of BP-ANN to initialize the neural network. Then, the BP-ANN after initialization was trained until the errors converged to the required precision. Finally, the network model, which met the requirements after being examined by the test samples, was applied to energy-absorption forecast of thin-walled cylindrical structure impacting. After example analysis, the GA-BP network model was trained until getting the desired network error only by 46 steps, while the single BP-ANN model achieved the same network error by 992 steps, which obviously shows that the GA-BP hybrid algorithm has faster convergence rate. The average relative forecast error (ARE) of the SEA predictive results obtained by GA-BP hybrid algorithm is 1.543%, while the ARE of the SEA predictive results obtained by BP-ANN is 2.950%, which clearly indicates that the forecast precision of the GA-BP hybrid algorithm is higher than that of the BP-ANN. 展开更多
关键词 thin-walled structure GA-BP hybrid algorithm IMPACT energy-absorption characteristic FORECAST
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部