在射频能量捕获无线传感器网络中,采用多跳的方式将数据发送给网络中的Sink节点能够减少节点间的通信距离,从而减少能量的消耗,但增加了转发节点的收发数据量。为了减少网络中转发节点的负载,延长网络的生命周期,提出了一种分层分步的...在射频能量捕获无线传感器网络中,采用多跳的方式将数据发送给网络中的Sink节点能够减少节点间的通信距离,从而减少能量的消耗,但增加了转发节点的收发数据量。为了减少网络中转发节点的负载,延长网络的生命周期,提出了一种分层分步的数据收集方法(Layer-Step Data Collection,LSDC)。通过对网络中节点能量进行捕获和在能量消耗过程进行建模,得到节点的剩余能量。通过运用多次"跳"命令的方式通知网络中的传感器节点分步地将采集到的数据传递给Sink节点。在传递节点的选择上,以能量状况最佳的节点作为传递节点,最终达到高效地将网络中的数据全部收集到Sink节点进行处理的目的。理论分析与仿真实验结果表明,与采用逐层收集数据的方法(Layer-By-Layer Data Collection,LDC)相比,所提方案更节能,能量消耗更均衡,能够延长网络的生命周期。展开更多
复合式能量收集技术是一种基于压电和电磁的传感器自供电技术。对复合式能量收集系统进行分析,给出系统的数学模型,讨论系统共振频率与系统结构参数的关系;设计了一种压电和电磁复合式能量收集装置,并进行实验验证。结果表明:给出的数...复合式能量收集技术是一种基于压电和电磁的传感器自供电技术。对复合式能量收集系统进行分析,给出系统的数学模型,讨论系统共振频率与系统结构参数的关系;设计了一种压电和电磁复合式能量收集装置,并进行实验验证。结果表明:给出的数学模型基本反映了系统的输出特性,在共振频率为18 Hz时,与单一型电磁技术实验在共振频率处得到的3.2 m W负载功率相比,复合式能量收集技术获得的最大负载功率3.8 m W,增加了19%。展开更多
为延长无线传感器网络(WSN)的寿命,在传统的典型分簇算法LEACH和EADEEG的基础上进行改进,提出了一种新的基于分簇结构的数据收集协议—IDCP(Improued Data Collectiou Protocot,IDCP),在簇首形成阶段和数据转发传递阶段分别提出了新的...为延长无线传感器网络(WSN)的寿命,在传统的典型分簇算法LEACH和EADEEG的基础上进行改进,提出了一种新的基于分簇结构的数据收集协议—IDCP(Improued Data Collectiou Protocot,IDCP),在簇首形成阶段和数据转发传递阶段分别提出了新的簇首形成算法和簇内数据转发算法.在簇首形成阶段,引入对节点可靠度指标的考量;在数据转发传递阶段,所有簇内普通节点对需要转发的信息首先进行判断分析,再决定是否进行信息传递.仿真实验结果表明:与传统协议相比较,改进算法在簇首选择和数据转发上都具有更好的网络处理能力和更高的效率,有效延长了网络生存周期.展开更多
在追求无线传感器网络高能量效率的同时,考虑数据汇聚时延,提出了一种能效与时延平衡的数据收集机制(energy efficiency and delay balancing data gathering,EEDBDG).该机制采用一种新型动态树来组织网络拓扑,消除了"热区"问...在追求无线传感器网络高能量效率的同时,考虑数据汇聚时延,提出了一种能效与时延平衡的数据收集机制(energy efficiency and delay balancing data gathering,EEDBDG).该机制采用一种新型动态树来组织网络拓扑,消除了"热区"问题,节点动态选择路由并轮换充当树根,根节点收集数据并与基站直接通信.同时,针对不同的时延和能效要求,提出了3种数据收集策略:时延最优算法(EEDBDG-D),能效最优算法(EEDBDG-E)和能效时延平衡算法(EEDBDG-M).仿真结果表明,在节点通信半径受限的情况下,EEDBDG平衡了节点能量消耗,延长了网络生命时间,在节能与省时上均表现出了突出的性能.与GSEN相比,在最好情况下,EEDBDG-E网络生命期提高了72%,EEDBDG-D汇聚时延降低了74%.展开更多
针对能量收集无线传感器网络(wireless sensor network,WSN)中的两跳多中继传输问题,构建无线射频能量站(power beacon,PB)辅助的能量收集无线携能通信(simultaneous wireless information and power transfer,SWIPT)中继模型.在中继节...针对能量收集无线传感器网络(wireless sensor network,WSN)中的两跳多中继传输问题,构建无线射频能量站(power beacon,PB)辅助的能量收集无线携能通信(simultaneous wireless information and power transfer,SWIPT)中继模型.在中继节点具有捕获源节点、环路自干扰和PB信号能量的特性下,推导目的节点采用选择式合并(selection combining,SC)、最大比合并(maximal ratio combining,MRC) 2种不同接收策略下的中断概率和吞吐量,继而在保障通信服务质量(quality of service,QoS)、PB发射功率、能量转化效率等多约束条件下,提出一种以吞吐量最大化为目标的联合优化时隙切换因子与功率分配因子的中继选择算法.仿真和数值结果显示:PB发射功率、时隙切换因子、天线数目、功率分配因子等参数对系统中断概率和吞吐量性能影响显著;当给定PB发射功率为6 dBW,天线数目为3根时,与随机中继选择算法和最大最小中继选择算法相比,本文算法在SC策略下的系统吞吐量增益分别为0.29、0.15 bit/(s·Hz),MRC策略下的吞吐量增益分别为0.32、0.16 bit/(s·Hz).展开更多
文摘在射频能量捕获无线传感器网络中,采用多跳的方式将数据发送给网络中的Sink节点能够减少节点间的通信距离,从而减少能量的消耗,但增加了转发节点的收发数据量。为了减少网络中转发节点的负载,延长网络的生命周期,提出了一种分层分步的数据收集方法(Layer-Step Data Collection,LSDC)。通过对网络中节点能量进行捕获和在能量消耗过程进行建模,得到节点的剩余能量。通过运用多次"跳"命令的方式通知网络中的传感器节点分步地将采集到的数据传递给Sink节点。在传递节点的选择上,以能量状况最佳的节点作为传递节点,最终达到高效地将网络中的数据全部收集到Sink节点进行处理的目的。理论分析与仿真实验结果表明,与采用逐层收集数据的方法(Layer-By-Layer Data Collection,LDC)相比,所提方案更节能,能量消耗更均衡,能够延长网络的生命周期。
文摘复合式能量收集技术是一种基于压电和电磁的传感器自供电技术。对复合式能量收集系统进行分析,给出系统的数学模型,讨论系统共振频率与系统结构参数的关系;设计了一种压电和电磁复合式能量收集装置,并进行实验验证。结果表明:给出的数学模型基本反映了系统的输出特性,在共振频率为18 Hz时,与单一型电磁技术实验在共振频率处得到的3.2 m W负载功率相比,复合式能量收集技术获得的最大负载功率3.8 m W,增加了19%。
文摘为延长无线传感器网络(WSN)的寿命,在传统的典型分簇算法LEACH和EADEEG的基础上进行改进,提出了一种新的基于分簇结构的数据收集协议—IDCP(Improued Data Collectiou Protocot,IDCP),在簇首形成阶段和数据转发传递阶段分别提出了新的簇首形成算法和簇内数据转发算法.在簇首形成阶段,引入对节点可靠度指标的考量;在数据转发传递阶段,所有簇内普通节点对需要转发的信息首先进行判断分析,再决定是否进行信息传递.仿真实验结果表明:与传统协议相比较,改进算法在簇首选择和数据转发上都具有更好的网络处理能力和更高的效率,有效延长了网络生存周期.
文摘在追求无线传感器网络高能量效率的同时,考虑数据汇聚时延,提出了一种能效与时延平衡的数据收集机制(energy efficiency and delay balancing data gathering,EEDBDG).该机制采用一种新型动态树来组织网络拓扑,消除了"热区"问题,节点动态选择路由并轮换充当树根,根节点收集数据并与基站直接通信.同时,针对不同的时延和能效要求,提出了3种数据收集策略:时延最优算法(EEDBDG-D),能效最优算法(EEDBDG-E)和能效时延平衡算法(EEDBDG-M).仿真结果表明,在节点通信半径受限的情况下,EEDBDG平衡了节点能量消耗,延长了网络生命时间,在节能与省时上均表现出了突出的性能.与GSEN相比,在最好情况下,EEDBDG-E网络生命期提高了72%,EEDBDG-D汇聚时延降低了74%.
文摘针对能量收集无线传感器网络(wireless sensor network,WSN)中的两跳多中继传输问题,构建无线射频能量站(power beacon,PB)辅助的能量收集无线携能通信(simultaneous wireless information and power transfer,SWIPT)中继模型.在中继节点具有捕获源节点、环路自干扰和PB信号能量的特性下,推导目的节点采用选择式合并(selection combining,SC)、最大比合并(maximal ratio combining,MRC) 2种不同接收策略下的中断概率和吞吐量,继而在保障通信服务质量(quality of service,QoS)、PB发射功率、能量转化效率等多约束条件下,提出一种以吞吐量最大化为目标的联合优化时隙切换因子与功率分配因子的中继选择算法.仿真和数值结果显示:PB发射功率、时隙切换因子、天线数目、功率分配因子等参数对系统中断概率和吞吐量性能影响显著;当给定PB发射功率为6 dBW,天线数目为3根时,与随机中继选择算法和最大最小中继选择算法相比,本文算法在SC策略下的系统吞吐量增益分别为0.29、0.15 bit/(s·Hz),MRC策略下的吞吐量增益分别为0.32、0.16 bit/(s·Hz).
基金the National Natural Science Foundation of China under Grant No.60573131 60673154( 国家自然科学基金)+2 种基金the National Grand Fundamental Research 973 Program of China under Grant No.2006CB303004( 国家重点基础研究发展规划(973))the Natural Science Foundation of Jiangsu Province of China under Grant No.BK2005208 BG2007039(江苏省自然科学基金).