期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
横向振幅超限桥梁上的列车运行安全性分析 被引量:8
1
作者 向俊 曾庆元 《中国铁道科学》 EI CAS CSCD 北大核心 2007年第3期56-61,共6页
采用车桥系统空间振动计算模型,基于列车脱轨能量随机分析理论,对京沪线南京长江大桥128 m简支钢桁梁桥、京通线烟囱沟桥及东沟桥、京广线颖河桥等4座横向振幅超限桥梁的列车运行安全性、舒适性及平稳性进行计算和分析。结果表明:南京... 采用车桥系统空间振动计算模型,基于列车脱轨能量随机分析理论,对京沪线南京长江大桥128 m简支钢桁梁桥、京通线烟囱沟桥及东沟桥、京广线颖河桥等4座横向振幅超限桥梁的列车运行安全性、舒适性及平稳性进行计算和分析。结果表明:南京长江大桥128 m简支钢桁梁桥允许货物列车以80 km.h-1及以下车速通过;在烟囱沟桥,货物列车宜限速50 km.h-1运行;在东沟桥,货物列车宜限速60 km.h-1运行;在颖河桥,货物列车可以按设计车速(80 km.h-1)及以下速度运行。研究结果已分别被上海、沈阳及郑州铁路局采纳。 展开更多
关键词 铁路桥梁 横向振幅 超限 脱轨 能量增量准则 安全性 舒适性 平稳性
在线阅读 下载PDF
列车脱轨机理与脱轨分析理论研究 被引量:7
2
作者 向俊 曾庆元 《中国铁道科学》 EI CAS CSCD 北大核心 2008年第1期127-129,共3页
The major problems existing in the derailment studies are summarized according to analysis of the research status about train derailment in China and other countries of the world.(1) The current criteria for preventin... The major problems existing in the derailment studies are summarized according to analysis of the research status about train derailment in China and other countries of the world.(1) The current criteria for preventing derailment cannot assure that derailment will not occur.(2) It is not clear for train derailment mechanism.(3) There exist three fundamental problems in the calculation of train derailment as follows: ① The connecting condition of displacement between wheel and rail cannot be satisfied in establishment and solution of vibration equation group of train-track(bridge) time-variant system.② Only the lateral track irregularity is regarded as the exciting source of lateral vibration of train-track(bridge) time-variant system.The true exciting source,i.e.the wheel and rail contact status is neglected.③ The random lateral vibration of train-track (bridge) time-variant system is analyzed according to the random track irregularity and analysis theory of random vibration of time-invariant system.But the maximum responses of lateral vibration of train-track(bridge) time-variant system cannot be calculated,and furthermore train deraiment cannot be forecasted.The thinking and methods for solving these problems are also introduced.The train derailment mechanism,which is the result of losing stability in lateral vibration status of train-track(bridge) time-variant system,is proposed for the first time by analysis of characteristics of self-excitation of train vibration and losing stability in self-excitation vibration status of train derailment.So the key to analyzing train derailment is to analyze the stability of lateral vibration of train-track(bridge) time-variant system.The following conclusions are made by summarizing the existing analysis theory of stability of static and dynamic system.(1) Because of the characteristics of time-variant and self-excitation of train-track(bridge) system,the stability of lateral vibration of the system cannot directly be analyzed by the existing analysis theory of stability of static and dynamic system.(2) The common point of the existing analysis theory of stability of static and dynamic system is that the stability of static and dynamic system is evaluated by the comparison between the resisting force increment(or the increment of the work done by the resisting force) and the load increment(or the increment of the input energy) after the system status produces excursion.(3) Because of the characteristic of selfexcitation of lateral vibration of train-track(bridge) system,both of the load and resisting force of lateral vibration of the system is not clear.So the stability of lateral vibration status of the system must be evaluated by the increment criterion of the work done by the resisting force and the input energy,and not by the increment criterion of resisting force and load.The condition for the stability of the lateral vibration of train-track(bridge) system and no derailment of the train is put forward according to the concept that the Tacoma cable bridge will lose stability in self-excitation vibration status under the action of wind when the input energy accumulated in the course of vibration reaches the work done by the limited resisting force.That is,the work done by the limited resisting force is larger than the maximum input energy.A set of theory for random energy analysis of train derailment is proposed.And the main contents are as below.(1) Taking into account the connecting condition of wheel-rail displacement and the influence of the clearance between wheel flange and gauge line,the matrix equation of the spatial vibration of train-track (bridge) system is established to calculate the whole course of train derailment.(2) The geometric criterion of train derailment is established.(3) The method for calculating the whole course of train derailment is put forward.(4) The vibration responses of the whole course of train derailment are calculated.The relationship curve between the work done by the limited resisting force of the lateral vibration of the system and train speed is gained.And the increment expression of the work done by the limited resisting force of the lateral vibration of the system is also obtained.(5) The method for calculating the increment of the maximum input energy of the lateral vibration of the system is put forward.(6) The energy increment criteria for determining the stability status of the lateral vibration of the system and train derailment is established.The bogie frame hunting wave of a freight train on Beijing-Tonghua railway line is measured and the relationship curve between the standard deviation of the bogie frame hunting wave of the empty car and train speed is gained.The bogie frame hunting wave of a high-speed train on Qinhuangdao-Shenyang railway line for passenger traffic is also measured and the relationship curve between the standard deviation of the bogie frame hunting wave of the high speed train and train speed is obtained.A set of software TDAS v1.0 for analyzing train derailment with property right is independently developed based on the theory of random energy analysis for train derailment.According to the software,a grave derailment accident of number 33117 freight train on Changchun-tumen railway line is analyzed.Safety analyses are made of trains running on six bridges such as Nanjing Yangtz river bridge etc.with their lateral vibration amplitudes exceeding specifications.And derailment controlling of high speed trains running on supper major bridges such as Tianxinzhou combined highway and railway bridge,Hujiawan bridge and Hengyang-Xiangjiang bridge etc.on Wuhan-guangzhou railway line for passenger traffic is analyzed.All of the analysis results mentioned above have been applied by the corresponding railway departments.The preventive measures against derailment and methods for stipulating preventive standard against derailment are proposed.A derailment warning device is invented a national patent is also gained.To counter train derailment under normal condition of train operation,i.e.undefined derailment,the technical principle for a warning system against derailment is proposed. 展开更多
关键词 列车脱轨 脱轨机理 能量增量准则 构架蛇形波 脱轨控制 预防措施 预防标准 脱轨报警器 脱轨预警系统
在线阅读 下载PDF
桥上列车脱轨计算分析 被引量:7
3
作者 周智辉 曾庆元 《中国铁道科学》 EI CAS CSCD 北大核心 2004年第4期46-49,共4页
在列车桥梁振动分析的计算模型基础上,进一步考虑了轮对与钢轨之间的相对位移大于游间时,轮缘爬上钢轨的接触状态,从而建立了桥上列车脱轨分析的计算模型。基于列车脱轨分析的能量随机分析理论,采用车桥系统输入能量增量与此系统抗力作... 在列车桥梁振动分析的计算模型基础上,进一步考虑了轮对与钢轨之间的相对位移大于游间时,轮缘爬上钢轨的接触状态,从而建立了桥上列车脱轨分析的计算模型。基于列车脱轨分析的能量随机分析理论,采用车桥系统输入能量增量与此系统抗力作功增量比较的能量增量准则,对老滦河桥下行线上列车脱轨实例和上行线上列车不脱轨实例进行了计算分析。分析结果与实际情况一致。 展开更多
关键词 铁路桥梁 脱轨 能量随机分析理论 能量增量准则
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部