期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
多层规则排列圆形铝蜂窝共面缓冲优化 被引量:2
1
作者 孙德强 罗显洲 +3 位作者 方众望 张小强 高芬 赵建伟 《包装工程》 CAS CSCD 北大核心 2014年第19期29-33,共5页
目的在不同速度的共面冲击载荷条件下,实现多层规则排列圆形铝蜂窝缓冲性能的优化。方法建立有限元分析模型以得到缓冲力学参数,并通过简化的能量吸收模型来评估其缓冲性能。结果多层规则排列圆形铝蜂窝缓冲性能与动态峰应力和动态密实... 目的在不同速度的共面冲击载荷条件下,实现多层规则排列圆形铝蜂窝缓冲性能的优化。方法建立有限元分析模型以得到缓冲力学参数,并通过简化的能量吸收模型来评估其缓冲性能。结果多层规则排列圆形铝蜂窝缓冲性能与动态峰应力和动态密实化应变有关,是由冲击速度、变形模式和相关结构参数共同决定的。结论通过数值结果分析,得到模型变形的临界速度、动态密实化应变和动态峰应力的经验公式,并详细地介绍了可行的缓冲优化方法。 展开更多
关键词 多层规则排列圆形铝蜂窝 能量吸收模型 单位体积最优能量吸收 最优能量吸收效率 缓冲性能优化
在线阅读 下载PDF
Energy-absorption forecast of thin-walled structure by GA-BP hybrid algorithm 被引量:7
2
作者 谢素超 周辉 +1 位作者 赵俊杰 章易程 《Journal of Central South University》 SCIE EI CAS 2013年第4期1122-1128,共7页
In order to analyze the influence rule of experimental parameters on the energy-absorption characteristics and effectively forecast energy-absorption characteristic of thin-walled structure, the forecast model of GA-B... In order to analyze the influence rule of experimental parameters on the energy-absorption characteristics and effectively forecast energy-absorption characteristic of thin-walled structure, the forecast model of GA-BP hybrid algorithm was presented by uniting respective applicability of back-propagation artificial neural network (BP-ANN) and genetic algorithm (GA). The detailed process was as follows. Firstly, the GA trained the best weights and thresholds as the initial values of BP-ANN to initialize the neural network. Then, the BP-ANN after initialization was trained until the errors converged to the required precision. Finally, the network model, which met the requirements after being examined by the test samples, was applied to energy-absorption forecast of thin-walled cylindrical structure impacting. After example analysis, the GA-BP network model was trained until getting the desired network error only by 46 steps, while the single BP-ANN model achieved the same network error by 992 steps, which obviously shows that the GA-BP hybrid algorithm has faster convergence rate. The average relative forecast error (ARE) of the SEA predictive results obtained by GA-BP hybrid algorithm is 1.543%, while the ARE of the SEA predictive results obtained by BP-ANN is 2.950%, which clearly indicates that the forecast precision of the GA-BP hybrid algorithm is higher than that of the BP-ANN. 展开更多
关键词 thin-walled structure GA-BP hybrid algorithm IMPACT energy-absorption characteristic FORECAST
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部