由于用户级综合能源系统(integrated energy system,IES)的多元负荷序列之间复杂的耦合关系及易受外部因素影响等原因,综合能源系统多元负荷的精准预测面临很大困难。为此,提出一种基于Spearman相关性分析阈值寻优(threshold optimizati...由于用户级综合能源系统(integrated energy system,IES)的多元负荷序列之间复杂的耦合关系及易受外部因素影响等原因,综合能源系统多元负荷的精准预测面临很大困难。为此,提出一种基于Spearman相关性分析阈值寻优(threshold optimization,TO)和变分模态分解结合长短期记忆网络(variational mode decomposition based long short-term memory network,VMD-LSTM)的多元负荷预测方法。首先,使用斯皮尔曼等级(Spearman rank,SR)相关系数定量计算多元负荷间以及负荷与其他气候因素间的相关关系并通过循环寻优确定最优相关阈值,然后采用VMD算法将以最优阈值筛选出的负荷特征序列分解成更简单、平稳、有规律性的本征模态函数(intrinsic mode function,IMF)后与最优气象特征一起输入LSTM模型进行负荷预测。通过某用户级IES的实际数据对所提方法的有效性进行了验证,结果表明,所提方法能有效提高IES的多元负荷预测精度。展开更多
在能源互联网快速发展的背景下,研究分析了综合能源系统的多元负荷预测模型及理论方法.针对传统ARIMA(Autoregressive Moving Average Model,ARMA)模型仅能处理线性关系的问题,将ARIMA模型与LSTM(Long-Short Term Memory,LSTM)网络模型...在能源互联网快速发展的背景下,研究分析了综合能源系统的多元负荷预测模型及理论方法.针对传统ARIMA(Autoregressive Moving Average Model,ARMA)模型仅能处理线性关系的问题,将ARIMA模型与LSTM(Long-Short Term Memory,LSTM)网络模型结合,提出并建立了ARIMA-LSTM模型.该模型不仅兼容冷、热、气、电等多元负荷的预测,并且可以用于风速、辐射照度等数据的预测,有较好的适应性和预测精度.展开更多
文摘由于用户级综合能源系统(integrated energy system,IES)的多元负荷序列之间复杂的耦合关系及易受外部因素影响等原因,综合能源系统多元负荷的精准预测面临很大困难。为此,提出一种基于Spearman相关性分析阈值寻优(threshold optimization,TO)和变分模态分解结合长短期记忆网络(variational mode decomposition based long short-term memory network,VMD-LSTM)的多元负荷预测方法。首先,使用斯皮尔曼等级(Spearman rank,SR)相关系数定量计算多元负荷间以及负荷与其他气候因素间的相关关系并通过循环寻优确定最优相关阈值,然后采用VMD算法将以最优阈值筛选出的负荷特征序列分解成更简单、平稳、有规律性的本征模态函数(intrinsic mode function,IMF)后与最优气象特征一起输入LSTM模型进行负荷预测。通过某用户级IES的实际数据对所提方法的有效性进行了验证,结果表明,所提方法能有效提高IES的多元负荷预测精度。
文摘在能源互联网快速发展的背景下,研究分析了综合能源系统的多元负荷预测模型及理论方法.针对传统ARIMA(Autoregressive Moving Average Model,ARMA)模型仅能处理线性关系的问题,将ARIMA模型与LSTM(Long-Short Term Memory,LSTM)网络模型结合,提出并建立了ARIMA-LSTM模型.该模型不仅兼容冷、热、气、电等多元负荷的预测,并且可以用于风速、辐射照度等数据的预测,有较好的适应性和预测精度.