In the age of online workload explosion,cloud users are increasing exponentialy.Therefore,large scale data centers are required in cloud environment that leads to high energy consumption.Hence,optimal resource utiliza...In the age of online workload explosion,cloud users are increasing exponentialy.Therefore,large scale data centers are required in cloud environment that leads to high energy consumption.Hence,optimal resource utilization is essential to improve energy efficiency of cloud data center.Although,most of the existing literature focuses on virtual machine(VM)consolidation for increasing energy efficiency at the cost of service level agreement degradation.In order to improve the existing approaches,load aware three-gear THReshold(LATHR)as well as modified best fit decreasing(MBFD)algorithm is proposed for minimizing total energy consumption while improving the quality of service in terms of SLA.It offers promising results under dynamic workload and variable number of VMs(1-290)allocated on individual host.The outcomes of the proposed work are measured in terms of SLA,energy consumption,instruction energy ratio(IER)and the number of migrations against the varied numbers of VMs.From experimental results it has been concluded that the proposed technique reduced the SLA violations(55%,26%and 39%)and energy consumption(17%,12%and 6%)as compared to median absolute deviation(MAD),inter quartile range(IQR)and double threshold(THR)overload detection policies,respectively.展开更多
In order to improve the energy efficiency of large-scale data centers, a virtual machine(VM) deployment algorithm called three-threshold energy saving algorithm(TESA), which is based on the linear relation between the...In order to improve the energy efficiency of large-scale data centers, a virtual machine(VM) deployment algorithm called three-threshold energy saving algorithm(TESA), which is based on the linear relation between the energy consumption and(processor) resource utilization, is proposed. In TESA, according to load, hosts in data centers are divided into four classes, that is,host with light load, host with proper load, host with middle load and host with heavy load. By defining TESA, VMs on lightly loaded host or VMs on heavily loaded host are migrated to another host with proper load; VMs on properly loaded host or VMs on middling loaded host are kept constant. Then, based on the TESA, five kinds of VM selection policies(minimization of migrations policy based on TESA(MIMT), maximization of migrations policy based on TESA(MAMT), highest potential growth policy based on TESA(HPGT), lowest potential growth policy based on TESA(LPGT) and random choice policy based on TESA(RCT)) are presented, and MIMT is chosen as the representative policy through experimental comparison. Finally, five research directions are put forward on future energy management. The results of simulation indicate that, as compared with single threshold(ST) algorithm and minimization of migrations(MM) algorithm, MIMT significantly improves the energy efficiency in data centers.展开更多
In order to save energy consumption of two-way amplifier forward(AF) relaying with channel estimation error, an energy efficiency enhancement scheme is proposed in this work. Firstly, through the analysis of two-way A...In order to save energy consumption of two-way amplifier forward(AF) relaying with channel estimation error, an energy efficiency enhancement scheme is proposed in this work. Firstly, through the analysis of two-way AF relaying mode with channel estimation error, the resultant instantaneous SNRs at end nodes is obtained. Then, by using a high SNR approximation, outage possibility is acquired and its simple closed-form expression is represented. Specially, for using the energy resource more efficiently, a low-complexity power allocation and transmission mode selection policy is proposed to enhance the energy efficiency of two-way AF relay system. Finally, relay priority region is identified in which cooperative diversity energy gain can be achieved. The computer simulations are presented to verify our analytical results, indicating that the proposed policy outperforms direct transmission by an energy gain of 3 dB at the relative channel estimation error less than 0.001. The results also show that the two-way AF relaying transmission loses the two-way AF relaying transmission loses its superiority to direct transmission in terms of energy efficiency when channel estimation error reaches 0.03.展开更多
文摘In the age of online workload explosion,cloud users are increasing exponentialy.Therefore,large scale data centers are required in cloud environment that leads to high energy consumption.Hence,optimal resource utilization is essential to improve energy efficiency of cloud data center.Although,most of the existing literature focuses on virtual machine(VM)consolidation for increasing energy efficiency at the cost of service level agreement degradation.In order to improve the existing approaches,load aware three-gear THReshold(LATHR)as well as modified best fit decreasing(MBFD)algorithm is proposed for minimizing total energy consumption while improving the quality of service in terms of SLA.It offers promising results under dynamic workload and variable number of VMs(1-290)allocated on individual host.The outcomes of the proposed work are measured in terms of SLA,energy consumption,instruction energy ratio(IER)and the number of migrations against the varied numbers of VMs.From experimental results it has been concluded that the proposed technique reduced the SLA violations(55%,26%and 39%)and energy consumption(17%,12%and 6%)as compared to median absolute deviation(MAD),inter quartile range(IQR)and double threshold(THR)overload detection policies,respectively.
基金Project(61272148) supported by the National Natural Science Foundation of ChinaProject(20120162110061) supported by the Doctoral Programs of Ministry of Education of China+1 种基金Project(CX2014B066) supported by the Hunan Provincial Innovation Foundation for Postgraduate,ChinaProject(2014zzts044) supported by the Fundamental Research Funds for the Central Universities,China
文摘In order to improve the energy efficiency of large-scale data centers, a virtual machine(VM) deployment algorithm called three-threshold energy saving algorithm(TESA), which is based on the linear relation between the energy consumption and(processor) resource utilization, is proposed. In TESA, according to load, hosts in data centers are divided into four classes, that is,host with light load, host with proper load, host with middle load and host with heavy load. By defining TESA, VMs on lightly loaded host or VMs on heavily loaded host are migrated to another host with proper load; VMs on properly loaded host or VMs on middling loaded host are kept constant. Then, based on the TESA, five kinds of VM selection policies(minimization of migrations policy based on TESA(MIMT), maximization of migrations policy based on TESA(MAMT), highest potential growth policy based on TESA(HPGT), lowest potential growth policy based on TESA(LPGT) and random choice policy based on TESA(RCT)) are presented, and MIMT is chosen as the representative policy through experimental comparison. Finally, five research directions are put forward on future energy management. The results of simulation indicate that, as compared with single threshold(ST) algorithm and minimization of migrations(MM) algorithm, MIMT significantly improves the energy efficiency in data centers.
基金Project(IRT0852) supported by the Program for Changjiang Scholars and Innovative Research Team in University,ChinaProject(2012CB316100) supported by the National Basic Research Program of China+2 种基金Projects(61101144,61101145) supported by the National Natural Science Foundation of ChinaProject(B08038) supported by the "111" Project,ChinaProject(K50510010017) supported by the Fundamental Research Funds for the Central Universities,China
文摘In order to save energy consumption of two-way amplifier forward(AF) relaying with channel estimation error, an energy efficiency enhancement scheme is proposed in this work. Firstly, through the analysis of two-way AF relaying mode with channel estimation error, the resultant instantaneous SNRs at end nodes is obtained. Then, by using a high SNR approximation, outage possibility is acquired and its simple closed-form expression is represented. Specially, for using the energy resource more efficiently, a low-complexity power allocation and transmission mode selection policy is proposed to enhance the energy efficiency of two-way AF relay system. Finally, relay priority region is identified in which cooperative diversity energy gain can be achieved. The computer simulations are presented to verify our analytical results, indicating that the proposed policy outperforms direct transmission by an energy gain of 3 dB at the relative channel estimation error less than 0.001. The results also show that the two-way AF relaying transmission loses the two-way AF relaying transmission loses its superiority to direct transmission in terms of energy efficiency when channel estimation error reaches 0.03.