期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于深度强化学习和隐私保护的群智感知动态任务分配策略
1
作者
傅彦铭
陆盛林
+1 位作者
陈嘉元
覃华
《信息网络安全》
CSCD
北大核心
2024年第3期449-461,共13页
在移动群智感知(Mobile Crowd Sensing,MCS)中,动态任务分配的结果对提高系统效率和确保数据质量至关重要。然而,现有的大部分研究在处理动态任务分配时,通常将其简化为二分匹配模型,该简化模型未充分考虑任务属性与工人属性对匹配结果...
在移动群智感知(Mobile Crowd Sensing,MCS)中,动态任务分配的结果对提高系统效率和确保数据质量至关重要。然而,现有的大部分研究在处理动态任务分配时,通常将其简化为二分匹配模型,该简化模型未充分考虑任务属性与工人属性对匹配结果的影响,同时忽视了工人位置隐私的保护问题。针对这些不足,文章提出一种基于深度强化学习和隐私保护的群智感知动态任务分配策略。该策略首先通过差分隐私技术为工人位置添加噪声,保护工人隐私;然后利用深度强化学习方法自适应地调整任务批量分配;最后使用基于工人任务执行能力阈值的贪婪算法计算最优策略下的平台总效用。在真实数据集上的实验结果表明,该策略在不同参数设置下均能保持优越的性能,同时有效地保护了工人的位置隐私。
展开更多
关键词
群智感知
深度强化学习
隐私保护
双深度Q网络
能力阈值贪婪算法
在线阅读
下载PDF
职称材料
题名
基于深度强化学习和隐私保护的群智感知动态任务分配策略
1
作者
傅彦铭
陆盛林
陈嘉元
覃华
机构
广西大学计算机与电子信息学院
广西高校并行分布与智能计算重点实验室
广西智能数字服务工程技术研究中心
出处
《信息网络安全》
CSCD
北大核心
2024年第3期449-461,共13页
基金
国家自然科学基金[61962005]。
文摘
在移动群智感知(Mobile Crowd Sensing,MCS)中,动态任务分配的结果对提高系统效率和确保数据质量至关重要。然而,现有的大部分研究在处理动态任务分配时,通常将其简化为二分匹配模型,该简化模型未充分考虑任务属性与工人属性对匹配结果的影响,同时忽视了工人位置隐私的保护问题。针对这些不足,文章提出一种基于深度强化学习和隐私保护的群智感知动态任务分配策略。该策略首先通过差分隐私技术为工人位置添加噪声,保护工人隐私;然后利用深度强化学习方法自适应地调整任务批量分配;最后使用基于工人任务执行能力阈值的贪婪算法计算最优策略下的平台总效用。在真实数据集上的实验结果表明,该策略在不同参数设置下均能保持优越的性能,同时有效地保护了工人的位置隐私。
关键词
群智感知
深度强化学习
隐私保护
双深度Q网络
能力阈值贪婪算法
Keywords
crowd sensing
deep reinforcement learning
privacy protection
double deep Q-network
capacity threshold greedy algorithm
分类号
TP309 [自动化与计算机技术—计算机系统结构]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于深度强化学习和隐私保护的群智感知动态任务分配策略
傅彦铭
陆盛林
陈嘉元
覃华
《信息网络安全》
CSCD
北大核心
2024
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部