Superplasticizers are widely used to reduce the pipe flow resistance of cemented paste backfill(CPB), which is characterised by high concentration and high yield stress. This study aimed to assess the time-dependent r...Superplasticizers are widely used to reduce the pipe flow resistance of cemented paste backfill(CPB), which is characterised by high concentration and high yield stress. This study aimed to assess the time-dependent rheological properties of CPB containing superplasticizer, with special focus on static yield stress and thixotropy. The results indicate that with the increase of the superplasticizer dosage, the static yield stress, dynamic yield stress and thixotropy of CPB decreased significantly, while the plastic viscosity decreased slightly. The curing time has a significant effect on the static yield stress, dynamic yield stress and thixotropy of CPB containing superplasticizer, which increase by 46.6%-87.1%,15.2%-35.6% and 79.4%-138.2%, respectively, within 2 h. The static yield stress, dynamic yield stress and thixotropy of CPB without superplasticizer only increase by 4.9%, 6.3% and 16.1%, respectively, within 2 h. The curing time has a significant influence on the plastic viscosity of CPB regardless of superplasticizer addition, the plastic viscosity increases by 13.2%-19.7% within 2 h. Regardless of superplasticizer dosage, plotting of both static yield stress and dynamic yield stress versus thixotropy produces clearly linear curves. The findings of this study are conducive to the design of pipe transportation of CPB containing superplasticizer.展开更多
To make backfilling body meet strength requirement,physical-chemical evaluation and proportioning tests were conducted on several backfilling materials.Jigging sands,#32.5 cement and fly ash were determined as backfil...To make backfilling body meet strength requirement,physical-chemical evaluation and proportioning tests were conducted on several backfilling materials.Jigging sands,#32.5 cement and fly ash were determined as backfilling aggregate,binding material and modified material,respectively.An optimized proportion of backfilling materials with a solid mass fraction of 78%and cement:fly ash:jigging sands mass ratio of 1:2:14,was suggested to Jiangan Pyrite Mine,China.The slurry made by optimized proportion produced obvious shear thinning phenomena,and was confirmed as paste-like slurry.To analyze its rheological characteristics,L-type pipeline test and Haake VT550 rotational viscometer test were conducted.Bingham and Casson fluid models were applied to several paste-like slurry samples to simulate flow and stress states;Casson fluid model was proved to have better simulation effect on paste-like slurry with shear thinning phenomena;rheological parameters of backfilling slurry made by suggested proportion were measured.Initial yield stress,average apparent viscosity and limiting viscosity are 55.35 Pa,1.216 Pa-s and 0.48 Pa-s,respectively.Compared with Bingham fluid model,Casson fluid model has a better simulation effect on paste-like slurry with shear thinning phenomena,through calculating the residual standard deviations.展开更多
基金Project(51834001)supported by the National Natural Science Fundation of ChinaProject(N2101043)supported by the Fundamental Research Funds for the Central Universities of China。
文摘Superplasticizers are widely used to reduce the pipe flow resistance of cemented paste backfill(CPB), which is characterised by high concentration and high yield stress. This study aimed to assess the time-dependent rheological properties of CPB containing superplasticizer, with special focus on static yield stress and thixotropy. The results indicate that with the increase of the superplasticizer dosage, the static yield stress, dynamic yield stress and thixotropy of CPB decreased significantly, while the plastic viscosity decreased slightly. The curing time has a significant effect on the static yield stress, dynamic yield stress and thixotropy of CPB containing superplasticizer, which increase by 46.6%-87.1%,15.2%-35.6% and 79.4%-138.2%, respectively, within 2 h. The static yield stress, dynamic yield stress and thixotropy of CPB without superplasticizer only increase by 4.9%, 6.3% and 16.1%, respectively, within 2 h. The curing time has a significant influence on the plastic viscosity of CPB regardless of superplasticizer addition, the plastic viscosity increases by 13.2%-19.7% within 2 h. Regardless of superplasticizer dosage, plotting of both static yield stress and dynamic yield stress versus thixotropy produces clearly linear curves. The findings of this study are conducive to the design of pipe transportation of CPB containing superplasticizer.
基金Project(2012BAC09B02)supported by the National Science and Technology Pillar Program during the 12th Five-Year Plan Period,China
文摘To make backfilling body meet strength requirement,physical-chemical evaluation and proportioning tests were conducted on several backfilling materials.Jigging sands,#32.5 cement and fly ash were determined as backfilling aggregate,binding material and modified material,respectively.An optimized proportion of backfilling materials with a solid mass fraction of 78%and cement:fly ash:jigging sands mass ratio of 1:2:14,was suggested to Jiangan Pyrite Mine,China.The slurry made by optimized proportion produced obvious shear thinning phenomena,and was confirmed as paste-like slurry.To analyze its rheological characteristics,L-type pipeline test and Haake VT550 rotational viscometer test were conducted.Bingham and Casson fluid models were applied to several paste-like slurry samples to simulate flow and stress states;Casson fluid model was proved to have better simulation effect on paste-like slurry with shear thinning phenomena;rheological parameters of backfilling slurry made by suggested proportion were measured.Initial yield stress,average apparent viscosity and limiting viscosity are 55.35 Pa,1.216 Pa-s and 0.48 Pa-s,respectively.Compared with Bingham fluid model,Casson fluid model has a better simulation effect on paste-like slurry with shear thinning phenomena,through calculating the residual standard deviations.