期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于深度学习的胃癌病理图像分类方法 被引量:26
1
作者 张泽中 高敬阳 +1 位作者 吕纲 赵地 《计算机科学》 CSCD 北大核心 2018年第B11期263-268,共6页
针对深度卷积神经网络能够有效提取图像深层特征的能力,选择在图像分类工作中表现优异的GoogLeNet和AlexNet模型对胃癌病理图像进行诊断。针对医学病理图像的特点,对GoogLeNet模型进行了优化,在保证诊断准确率的前提下降低了计算成本。... 针对深度卷积神经网络能够有效提取图像深层特征的能力,选择在图像分类工作中表现优异的GoogLeNet和AlexNet模型对胃癌病理图像进行诊断。针对医学病理图像的特点,对GoogLeNet模型进行了优化,在保证诊断准确率的前提下降低了计算成本。在此基础上,提出模型融合的思想,通过综合不同结构和不同深度的网络模型,来学习更多的图像特征,以获取更有效的胃癌病理信息。实验结果表明,相比原始模型,多种结构的融合模型在胃癌病理图像的诊断上取得了更好的效果。 展开更多
关键词 深度学习 卷积神经网络 胃癌病理图像 GoogLeNet优化 模型融合
在线阅读 下载PDF
MIFNet:基于多尺度输入与特征融合的胃癌病理图像分割方法 被引量:9
2
作者 张泽中 高敬阳 赵地 《计算机应用》 CSCD 北大核心 2019年第S02期107-113,共7页
针对人工判别胃癌病理图像对专业知识要求较高且费时费力的问题,提出一种基于深度学习的分割算法对胃癌病理图像的病变区域进行自动分割,为病理医生的工作提供更有依据的诊断指导。在已有的U-Net模型基础上,提出一种基于多尺度输入与特... 针对人工判别胃癌病理图像对专业知识要求较高且费时费力的问题,提出一种基于深度学习的分割算法对胃癌病理图像的病变区域进行自动分割,为病理医生的工作提供更有依据的诊断指导。在已有的U-Net模型基础上,提出一种基于多尺度输入与特征融合的多输入融合网络(MIFNet)模型,通过对不同输入尺度特征进行自动提取和融合以实现对胃癌病理图像中病变区域的自动分割。多尺度输入数据能够帮助模型更有针对性地捕捉图像的局部和全局特征,特征融合策略能够兼顾模型对全局特征与局部特征的关注。在中国大数据人工智能创新创业大赛的"病理切片识别AI挑战赛"数据集上的实验结果显示,MIFNet在测试中的dice系数达到了81.87%,比U-Net和SegNet等模型提高了10%以上,模型的参数规模也大大下降。所以说,MIFNet模型在提高分割的准确度以及节省计算资源等方面都取得了更好的效果。 展开更多
关键词 多输入融合网络 多尺度输入 特征融合 胃癌病理图像 图像分割
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部