期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于PKUSEG-Text-GCN的肿瘤疾病预测模型
1
作者
高志玲
赵新宇
《计算机工程与科学》
2025年第7期1303-1311,共9页
当前疾病预测模型仅关注病历文本的局部信息以及上下文信息,缺乏对全局信息的考虑,由此导致预测结果准确率不高。利用图神经网络关注全局信息的特点,提出将图卷积神经网络(GCN)用于中文电子病历的肿瘤疾病预测。首先,利用医学领域分词...
当前疾病预测模型仅关注病历文本的局部信息以及上下文信息,缺乏对全局信息的考虑,由此导致预测结果准确率不高。利用图神经网络关注全局信息的特点,提出将图卷积神经网络(GCN)用于中文电子病历的肿瘤疾病预测。首先,利用医学领域分词工具包PKUSEG对中文电子病历进行分词;其次,通过病历与词的共现关系和病历文本中词与词之间的关系,建立文本图;最后,基于该医学文本图利用图卷积神经网络(Text-GCN)对文本图的特征进行学习,将学习到的模型用于肿瘤疾病预测。实验结果显示,所提模型相比多个模型中的最优模型准确率提升了6%。同时,当数据较少的时候准确率并不会明显下降,表明该模型在电子病历较少的情况下仍具有很好的鲁棒性。
展开更多
关键词
文本图卷积神经网络
中文分词
肿瘤致病分析
肿瘤
疾病预测
在线阅读
下载PDF
职称材料
题名
基于PKUSEG-Text-GCN的肿瘤疾病预测模型
1
作者
高志玲
赵新宇
机构
西北师范大学计算机科学与工程学院
出处
《计算机工程与科学》
2025年第7期1303-1311,共9页
基金
国家自然科学基金(62363031)。
文摘
当前疾病预测模型仅关注病历文本的局部信息以及上下文信息,缺乏对全局信息的考虑,由此导致预测结果准确率不高。利用图神经网络关注全局信息的特点,提出将图卷积神经网络(GCN)用于中文电子病历的肿瘤疾病预测。首先,利用医学领域分词工具包PKUSEG对中文电子病历进行分词;其次,通过病历与词的共现关系和病历文本中词与词之间的关系,建立文本图;最后,基于该医学文本图利用图卷积神经网络(Text-GCN)对文本图的特征进行学习,将学习到的模型用于肿瘤疾病预测。实验结果显示,所提模型相比多个模型中的最优模型准确率提升了6%。同时,当数据较少的时候准确率并不会明显下降,表明该模型在电子病历较少的情况下仍具有很好的鲁棒性。
关键词
文本图卷积神经网络
中文分词
肿瘤致病分析
肿瘤
疾病预测
Keywords
text graph convolutional network
Chinese word segmentation
tumor disease analysis
tumor disease prediction
分类号
TP182 [自动化与计算机技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于PKUSEG-Text-GCN的肿瘤疾病预测模型
高志玲
赵新宇
《计算机工程与科学》
2025
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部