期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
CT影像组学机器学习模型鉴别肺炎型黏液腺癌与机化性肺炎 被引量:1
1
作者 杜自宏 伍志发 +2 位作者 刘静 李新春 刘红艳 《放射学实践》 CSCD 北大核心 2024年第4期461-467,共7页
目的:评估CT影像组学结合机器学习方法鉴别原发肺炎型黏液腺癌(PTMA)与机化性肺炎(OP)的价值。方法:回顾性分析2010年1月-2020年1月在本院经病理证实的51例PTMA患者与50例OP患者的临床及影像学资料。分别在平扫及CT增强图像上提取病灶... 目的:评估CT影像组学结合机器学习方法鉴别原发肺炎型黏液腺癌(PTMA)与机化性肺炎(OP)的价值。方法:回顾性分析2010年1月-2020年1月在本院经病理证实的51例PTMA患者与50例OP患者的临床及影像学资料。分别在平扫及CT增强图像上提取病灶的影像组学特征,通过线性相关性分析和L1正则化方式进行特征的筛选和降维。对两组的临床特征、CT形态学特征及影像组学特征进行统计学分析,将3类特征中有统计学意义者分别或联合构建机器学习预测模型,共获得4个预测模型(临床、CT形态学征象、影像组学合联合模型)。采用ROC曲线分析评估各类模型的诊断效能。结果:临床特征中的性别、咳白黏痰、癌胚抗原和糖类抗原153、CT形态学征象中的小结节、空泡/假空洞征、血管造影征和重力分布在PTMA组与OP组之间的差异均有统计学意义(P<0.05)。二元logistic回归分析显示性别、小结节、空泡/假空洞征和血管造影征是鉴别PTMA与OP的独立预测因素(P<0.05)。在训练集和验证集中各类机器学习模型的AUC:影像组学模型为0.997和0.946,临床模型为0.869和0.814,CT形态学特征模型为0.919和0.797,联合模型为0.999和0.972。Delong检验显示影像组学模型的诊断效能显著优于临床模型及CT形态学特征模型(P均<0.05),与联合模型无显著差异(P>0.05)。结论:CT影像组学结合机器学习方法提取并分析多维度影像数据,可以有效鉴别PTMA与OP,辅助临床治疗决策。 展开更多
关键词 肺肿瘤 肺炎型黏液腺癌 机化性肺炎 影像组学 机器学习 体层摄影术 X线计算机
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部