期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
CT影像组学机器学习模型鉴别肺炎型黏液腺癌与机化性肺炎
被引量:
1
1
作者
杜自宏
伍志发
+2 位作者
刘静
李新春
刘红艳
《放射学实践》
CSCD
北大核心
2024年第4期461-467,共7页
目的:评估CT影像组学结合机器学习方法鉴别原发肺炎型黏液腺癌(PTMA)与机化性肺炎(OP)的价值。方法:回顾性分析2010年1月-2020年1月在本院经病理证实的51例PTMA患者与50例OP患者的临床及影像学资料。分别在平扫及CT增强图像上提取病灶...
目的:评估CT影像组学结合机器学习方法鉴别原发肺炎型黏液腺癌(PTMA)与机化性肺炎(OP)的价值。方法:回顾性分析2010年1月-2020年1月在本院经病理证实的51例PTMA患者与50例OP患者的临床及影像学资料。分别在平扫及CT增强图像上提取病灶的影像组学特征,通过线性相关性分析和L1正则化方式进行特征的筛选和降维。对两组的临床特征、CT形态学特征及影像组学特征进行统计学分析,将3类特征中有统计学意义者分别或联合构建机器学习预测模型,共获得4个预测模型(临床、CT形态学征象、影像组学合联合模型)。采用ROC曲线分析评估各类模型的诊断效能。结果:临床特征中的性别、咳白黏痰、癌胚抗原和糖类抗原153、CT形态学征象中的小结节、空泡/假空洞征、血管造影征和重力分布在PTMA组与OP组之间的差异均有统计学意义(P<0.05)。二元logistic回归分析显示性别、小结节、空泡/假空洞征和血管造影征是鉴别PTMA与OP的独立预测因素(P<0.05)。在训练集和验证集中各类机器学习模型的AUC:影像组学模型为0.997和0.946,临床模型为0.869和0.814,CT形态学特征模型为0.919和0.797,联合模型为0.999和0.972。Delong检验显示影像组学模型的诊断效能显著优于临床模型及CT形态学特征模型(P均<0.05),与联合模型无显著差异(P>0.05)。结论:CT影像组学结合机器学习方法提取并分析多维度影像数据,可以有效鉴别PTMA与OP,辅助临床治疗决策。
展开更多
关键词
肺肿瘤
肺炎型黏液腺癌
机化性
肺炎
影像组学
机器学习
体层摄影术
X线计算机
在线阅读
下载PDF
职称材料
题名
CT影像组学机器学习模型鉴别肺炎型黏液腺癌与机化性肺炎
被引量:
1
1
作者
杜自宏
伍志发
刘静
李新春
刘红艳
机构
云南省第一人民医院放射科/昆明理工大学附属医院
广州医科大学附属第一医院放射科
广州医科大学附属第六医院放射科
出处
《放射学实践》
CSCD
北大核心
2024年第4期461-467,共7页
基金
市校联合资助项目基础与应用基础研究项目(202201020456)
广东省基础与应用基础联合基金青年项目(2019A1515111161)。
文摘
目的:评估CT影像组学结合机器学习方法鉴别原发肺炎型黏液腺癌(PTMA)与机化性肺炎(OP)的价值。方法:回顾性分析2010年1月-2020年1月在本院经病理证实的51例PTMA患者与50例OP患者的临床及影像学资料。分别在平扫及CT增强图像上提取病灶的影像组学特征,通过线性相关性分析和L1正则化方式进行特征的筛选和降维。对两组的临床特征、CT形态学特征及影像组学特征进行统计学分析,将3类特征中有统计学意义者分别或联合构建机器学习预测模型,共获得4个预测模型(临床、CT形态学征象、影像组学合联合模型)。采用ROC曲线分析评估各类模型的诊断效能。结果:临床特征中的性别、咳白黏痰、癌胚抗原和糖类抗原153、CT形态学征象中的小结节、空泡/假空洞征、血管造影征和重力分布在PTMA组与OP组之间的差异均有统计学意义(P<0.05)。二元logistic回归分析显示性别、小结节、空泡/假空洞征和血管造影征是鉴别PTMA与OP的独立预测因素(P<0.05)。在训练集和验证集中各类机器学习模型的AUC:影像组学模型为0.997和0.946,临床模型为0.869和0.814,CT形态学特征模型为0.919和0.797,联合模型为0.999和0.972。Delong检验显示影像组学模型的诊断效能显著优于临床模型及CT形态学特征模型(P均<0.05),与联合模型无显著差异(P>0.05)。结论:CT影像组学结合机器学习方法提取并分析多维度影像数据,可以有效鉴别PTMA与OP,辅助临床治疗决策。
关键词
肺肿瘤
肺炎型黏液腺癌
机化性
肺炎
影像组学
机器学习
体层摄影术
X线计算机
Keywords
Lung tumor
Pneumonia-type mucinous adenocarcinoma
Organizing pneumonia
Radiomics
Machine learning
Tomography,X-ray computer
分类号
R814.42 [医药卫生—影像医学与核医学]
R734.2 [医药卫生—肿瘤]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
CT影像组学机器学习模型鉴别肺炎型黏液腺癌与机化性肺炎
杜自宏
伍志发
刘静
李新春
刘红艳
《放射学实践》
CSCD
北大核心
2024
1
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部