期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
IMGAF-RLNet模型的股指趋势预测研究
1
作者 张菊平 李路 《计算机工程与应用》 北大核心 2025年第6期229-243,共15页
针对金融时间序列动态不稳定性以及长期依赖的特性,构建了基于深度学习算法的IMGAF-RLNet模型预测中国股票市场的大、中盘指数涨跌趋势。IMGAF-RLNet采用格拉姆角场方法将目标股指和基于斯皮尔曼秩相关系数筛选的成分股的不同特征序列... 针对金融时间序列动态不稳定性以及长期依赖的特性,构建了基于深度学习算法的IMGAF-RLNet模型预测中国股票市场的大、中盘指数涨跌趋势。IMGAF-RLNet采用格拉姆角场方法将目标股指和基于斯皮尔曼秩相关系数筛选的成分股的不同特征序列编码为格拉姆差角场矩阵,然后将得到的矩阵序列构造为多维张量输入根据预训练模型分类结果筛选的CNN分类器残差网络(ResNet)进行特征提取,同时添加长短时记忆网络(LSTM)学习股指数据的时序特征,最后通过全连接网络对ResNet提取的局部特征和LSTM提取的整体特征完成股指趋势分类预测。选取沪深300、上证50、中证500指数作为研究对象。实验表明,三只股指的短、中、长期趋势预测准确率均在59%以上,其中预测效果最好的窗口及分类准确率分别为40、20、20以及62.65%、63.68%、61.85%。 展开更多
关键词 股指趋势预测 数据增强 格拉姆角场 残差神经网络 长短时记忆网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部