In this study,circular dichroism(CD)and molecular dynamics(MD)simulation were used to investigate the thermal unfolding pathway of staphylococcal enterotoxin B(SEB)at temperatures of 298–371 and 298–500 K,and the re...In this study,circular dichroism(CD)and molecular dynamics(MD)simulation were used to investigate the thermal unfolding pathway of staphylococcal enterotoxin B(SEB)at temperatures of 298–371 and 298–500 K,and the relationship between the experimental and simulation results were explored.Our computational findings on the secondary structure of SEB showed that at room temperature,the CD spectroscopic results were highly consistent with the MD results.Moreover,under heating conditions,the changing trends of helix,sheet and random coil obtained by CD spectral fitting were highly consistent with those obtained by MD.In order to gain a deeper understanding of the thermal stability mechanism of SEB,the MD trajectories were analyzed in terms of root mean square deviation(RMSD),secondary structure assignment(SSA),radius of gyration(R_(g)),free energy surfaces(FES),solvent-accessible surface area(SASA),hydrogen bonds and salt bridges.The results showed that at low heating temperature,domain Ⅰ without loops(omitting the mobile loop region)mainly relied on hydrophobic interaction to maintain its thermal stability,whereas the thermal stability of domain Ⅱ was mainly controlled by salt bridges and hydrogen bonds.Under high heating temperature conditions,the hydrophobic interactions in domain Ⅰ without loops were destroyed and the secondary structure was almost completely lost,while domain Ⅱ could still rely on salt bridges as molecular staples to barely maintain the stability of the secondary structure.These results help us to understand the thermodynamic and kinetic mechanisms that maintain the thermal stability of SEB at the molecular level,and provide a direction for establishing safer and more effective food sterilization processes.展开更多
目的建立变应性鼻炎(AR)小鼠模型,研究金黄色葡萄球菌肠毒素B(staphylococcal enterotoxin B,SEB)和卵清蛋白(ovalbumin,OVA)在建立AR模型中的作用,并探讨小鼠鼻黏膜中调节性T细胞(regulatory T cell,Treg)的变化。方法将40只6~8周Bal...目的建立变应性鼻炎(AR)小鼠模型,研究金黄色葡萄球菌肠毒素B(staphylococcal enterotoxin B,SEB)和卵清蛋白(ovalbumin,OVA)在建立AR模型中的作用,并探讨小鼠鼻黏膜中调节性T细胞(regulatory T cell,Treg)的变化。方法将40只6~8周Balb/c小鼠,随机分为4组:OVA组(A组)、SEB组(B组)、OVA+SEB组(C组)、生理盐水组(D组),建立小鼠AR模型。采用析因设计分析各组小鼠临床症状评分及Foxp3阳性细胞数。结果 A、B、C、D组症状评分分别为0.90±0.99、0.70±0.82、6.80±1.03、0.60±0.70,C组造模成功,OVA与SEB交互效应,P<0.01;与其他三组相比,C组Foxp3阳性细胞数显著下降,OVA、SEB交互效应,P<0.01。结论只有SEB和OVA协同作用后可致小鼠AR,即SEB可以提高机体对OVA的易感性,发挥免疫佐剂的作用;小鼠鼻黏膜中Treg水平下降,不能有效抑制鼻Th2细胞反应,可能是AR发生的原因之一。展开更多
Objective : To construct plant transformation vector containing Escherichia coli heat-labile enterotoxin B subunit (LT-B) gene and generate LT-B transgenic tobacco plants. Methods: The LT-B coding sequence was amp...Objective : To construct plant transformation vector containing Escherichia coli heat-labile enterotoxin B subunit (LT-B) gene and generate LT-B transgenic tobacco plants. Methods: The LT-B coding sequence was amplified from pMMB68 by PCR, subcloned into middle vector pUCmT and binary vector pBI121 to obtain plant expression vector pBI-LTB, in which LT-B expression was controlled under the Cauliflower mosaic virus (CaMV) 35S promoter. The tobacco plants (Nicotiana tobacum L. Cuttivar Xanthi) were transformed by co-cultivating leaf discs method via Agrobacterium tumefaciens LBA4404 harboring the plant expression vector. The regenerated transgenic tobacco plants were selected by kanamycin and confirmed by PCR, Southern blot, Western blot and ELISA. Resuits: LT-B gene integrated in the tobacco genomic DNA and were expressed in 9 strains of transgenic tobacco plants. The yield was varied from 3. 36-10. 56 ng/mg total soluble tobacco leaf protein. Conclusion: The plant binary expression vector pBI-LTB was constructed successfully, and transgenic LT-B tobacco plants was generated, and confirmed by Southern blot. The protein LT-B expressed by engineered plants was identified by Western blot analysis and had the expected molecular weight of LT-B pentamer protein. This result is an important step close to developing an edible vaccine and supplying a mucasal immunoajuvant, which will contribute to the preven- tion of mucosaroute evading pathogen.展开更多
文摘In this study,circular dichroism(CD)and molecular dynamics(MD)simulation were used to investigate the thermal unfolding pathway of staphylococcal enterotoxin B(SEB)at temperatures of 298–371 and 298–500 K,and the relationship between the experimental and simulation results were explored.Our computational findings on the secondary structure of SEB showed that at room temperature,the CD spectroscopic results were highly consistent with the MD results.Moreover,under heating conditions,the changing trends of helix,sheet and random coil obtained by CD spectral fitting were highly consistent with those obtained by MD.In order to gain a deeper understanding of the thermal stability mechanism of SEB,the MD trajectories were analyzed in terms of root mean square deviation(RMSD),secondary structure assignment(SSA),radius of gyration(R_(g)),free energy surfaces(FES),solvent-accessible surface area(SASA),hydrogen bonds and salt bridges.The results showed that at low heating temperature,domain Ⅰ without loops(omitting the mobile loop region)mainly relied on hydrophobic interaction to maintain its thermal stability,whereas the thermal stability of domain Ⅱ was mainly controlled by salt bridges and hydrogen bonds.Under high heating temperature conditions,the hydrophobic interactions in domain Ⅰ without loops were destroyed and the secondary structure was almost completely lost,while domain Ⅱ could still rely on salt bridges as molecular staples to barely maintain the stability of the secondary structure.These results help us to understand the thermodynamic and kinetic mechanisms that maintain the thermal stability of SEB at the molecular level,and provide a direction for establishing safer and more effective food sterilization processes.
基金Supported by the National Natural Science Foundation ofChina (No. 30070848)
文摘Objective : To construct plant transformation vector containing Escherichia coli heat-labile enterotoxin B subunit (LT-B) gene and generate LT-B transgenic tobacco plants. Methods: The LT-B coding sequence was amplified from pMMB68 by PCR, subcloned into middle vector pUCmT and binary vector pBI121 to obtain plant expression vector pBI-LTB, in which LT-B expression was controlled under the Cauliflower mosaic virus (CaMV) 35S promoter. The tobacco plants (Nicotiana tobacum L. Cuttivar Xanthi) were transformed by co-cultivating leaf discs method via Agrobacterium tumefaciens LBA4404 harboring the plant expression vector. The regenerated transgenic tobacco plants were selected by kanamycin and confirmed by PCR, Southern blot, Western blot and ELISA. Resuits: LT-B gene integrated in the tobacco genomic DNA and were expressed in 9 strains of transgenic tobacco plants. The yield was varied from 3. 36-10. 56 ng/mg total soluble tobacco leaf protein. Conclusion: The plant binary expression vector pBI-LTB was constructed successfully, and transgenic LT-B tobacco plants was generated, and confirmed by Southern blot. The protein LT-B expressed by engineered plants was identified by Western blot analysis and had the expected molecular weight of LT-B pentamer protein. This result is an important step close to developing an edible vaccine and supplying a mucasal immunoajuvant, which will contribute to the preven- tion of mucosaroute evading pathogen.