太赫兹源的输出功率是限制太赫兹技术远距离应用的重要参数。为了实现高效的太赫兹倍频器,基于高频特性下肖特基二极管的有源区电气模型建模方法,利用指标参数不同的两种肖特基二极管,研制出了两种170 GHz平衡式倍频器。所采用的肖特基...太赫兹源的输出功率是限制太赫兹技术远距离应用的重要参数。为了实现高效的太赫兹倍频器,基于高频特性下肖特基二极管的有源区电气模型建模方法,利用指标参数不同的两种肖特基二极管,研制出了两种170 GHz平衡式倍频器。所采用的肖特基二极管有源结区模型完善地考虑了二极管IV特性,载流子饱和速率限制,直流串联电阻以及趋肤效应等特性。通过对两种倍频器仿真结果进行对比,完备地分析了二极管主要指标参数对倍频器性能的影响。最后测试结果显示两种平衡式170 GHz倍频器在155~178 GHz工作带宽内的最高倍频效率分别大于11%和24%,最高输出功率分别大于15 m W和25 m W。从仿真和测试结果表示,采用的肖特基二极管建模方法和平衡式倍频器结构适用于研制高效的太赫兹倍频器。展开更多
在对肖特基二极管电磁模型和电路模型精确建模的基础上,设计并制作了W波段宽带八次谐波混频器.通过对肖特基二极管物理结构的分析,建立了其精确的三维电磁仿真模型和直到180 GHz的改进的宽带等效电路模型.针对W波段八次谐波混频器混频...在对肖特基二极管电磁模型和电路模型精确建模的基础上,设计并制作了W波段宽带八次谐波混频器.通过对肖特基二极管物理结构的分析,建立了其精确的三维电磁仿真模型和直到180 GHz的改进的宽带等效电路模型.针对W波段八次谐波混频器混频产物能量分布特点和工作带宽要求,设计了宽带射频和本振匹配网络,使混频器的工作带宽能覆盖整个W波段.测试结果显示,射频信号在75~110 GHz频率范围内,W波段八次谐波混频器最大变频损耗28 d B,最小变频损耗18 d B.展开更多
文摘太赫兹源的输出功率是限制太赫兹技术远距离应用的重要参数。为了实现高效的太赫兹倍频器,基于高频特性下肖特基二极管的有源区电气模型建模方法,利用指标参数不同的两种肖特基二极管,研制出了两种170 GHz平衡式倍频器。所采用的肖特基二极管有源结区模型完善地考虑了二极管IV特性,载流子饱和速率限制,直流串联电阻以及趋肤效应等特性。通过对两种倍频器仿真结果进行对比,完备地分析了二极管主要指标参数对倍频器性能的影响。最后测试结果显示两种平衡式170 GHz倍频器在155~178 GHz工作带宽内的最高倍频效率分别大于11%和24%,最高输出功率分别大于15 m W和25 m W。从仿真和测试结果表示,采用的肖特基二极管建模方法和平衡式倍频器结构适用于研制高效的太赫兹倍频器。
文摘在对肖特基二极管电磁模型和电路模型精确建模的基础上,设计并制作了W波段宽带八次谐波混频器.通过对肖特基二极管物理结构的分析,建立了其精确的三维电磁仿真模型和直到180 GHz的改进的宽带等效电路模型.针对W波段八次谐波混频器混频产物能量分布特点和工作带宽要求,设计了宽带射频和本振匹配网络,使混频器的工作带宽能覆盖整个W波段.测试结果显示,射频信号在75~110 GHz频率范围内,W波段八次谐波混频器最大变频损耗28 d B,最小变频损耗18 d B.