期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
一种基于粒度原理的多指标综合Web用户聚类算法 被引量:3
1
作者 赵洁 董振宁 +1 位作者 张沙清 肖南峰 《计算机应用研究》 CSCD 北大核心 2011年第7期2427-2431,2435,共6页
为了解决传统聚类算法难以获得较好的Web用户聚类结果、使用的指标无法全面反映用户行为特征的问题,提出一种基于粒度原理的Web用户聚类算法。首先对离散化数据给出稀疏相似度和初始等价关系的定义,进行初次聚类;然后设计可变精度的二... 为了解决传统聚类算法难以获得较好的Web用户聚类结果、使用的指标无法全面反映用户行为特征的问题,提出一种基于粒度原理的Web用户聚类算法。首先对离散化数据给出稀疏相似度和初始等价关系的定义,进行初次聚类;然后设计可变精度的二次聚类模型对初始聚类结果进行修正;最后结合应用领域定义一种新的聚类质量评价模型。算法中面向Web用户引入多指标体系,各种指标既可独立考核,也可灵活组合,并同时兼顾决策者对指标的偏好。实验证明,该算法适用于Web用户的高维稀疏数据,不依赖样本的顺序,具有更广应用性,可提供多粒度分析结果,得到的聚类结果能真实反映数据的特征。 展开更多
关键词 WEB使用挖掘 粒度原理 高属性维稀疏数据 多指标 聚类质量评价
在线阅读 下载PDF
基于知识粒度的高属性维稀疏聚类算法 被引量:2
2
作者 赵洁 肖南峰 陈琼 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2010年第7期20-26,共7页
目前的高属性维稀疏数据算法大多面向二态数据,而且没有聚类结果的评价方法,给应用带来很大局限.针对这些问题,文中提出了一种基于知识粒度的高属性维聚类算法.首先通过设计面向数据稀疏特征的半模糊聚类算法对数据进行离散化,并基于此... 目前的高属性维稀疏数据算法大多面向二态数据,而且没有聚类结果的评价方法,给应用带来很大局限.针对这些问题,文中提出了一种基于知识粒度的高属性维聚类算法.首先通过设计面向数据稀疏特征的半模糊聚类算法对数据进行离散化,并基于此给出稀疏相似度和初始等价关系的定义;然后设计可变精度的二次聚类模型对初始聚类结果进行修正,使算法具有较强的抗噪声能力;最后结合应用领域定义一种新的聚类质量评价模型.实验证明,该算法可提供多粒度分析结果,准确度更高,得到的聚类结果能真实反映数据的特征. 展开更多
关键词 知识粒度 高属性维稀疏数据 初始等价关系 不可区分度 聚类质量评价
在线阅读 下载PDF
Spatial quality evaluation for drinking water based on GIS and ant colony clustering algorithm 被引量:4
3
作者 侯景伟 米文宝 李陇堂 《Journal of Central South University》 SCIE EI CAS 2014年第3期1051-1057,共7页
To develop a better approach for spatial evaluation of drinking water quality, an intelligent evaluation method integrating a geographical information system(GIS) and an ant colony clustering algorithm(ACCA) was used.... To develop a better approach for spatial evaluation of drinking water quality, an intelligent evaluation method integrating a geographical information system(GIS) and an ant colony clustering algorithm(ACCA) was used. Drinking water samples from 29 wells in Zhenping County, China, were collected and analyzed. 35 parameters on water quality were selected, such as chloride concentration, sulphate concentration, total hardness, nitrate concentration, fluoride concentration, turbidity, pH, chromium concentration, COD, bacterium amount, total coliforms and color. The best spatial interpolation methods for the 35 parameters were found and selected from all types of interpolation methods in GIS environment according to the minimum cross-validation errors. The ACCA was improved through three strategies, namely mixed distance function, average similitude degree and probability conversion functions. Then, the ACCA was carried out to obtain different water quality grades in the GIS environment. In the end, the result from the ACCA was compared with those from the competitive Hopfield neural network(CHNN) to validate the feasibility and effectiveness of the ACCA according to three evaluation indexes, which are stochastic sampling method, pixel amount and convergence speed. It is shown that the spatial water quality grades obtained from the ACCA were more effective, accurate and intelligent than those obtained from the CHNN. 展开更多
关键词 geographical information system (GIS) ant colony clustering algorithm (ACCA) quality evaluation drinking water spatial analysis
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部