为应对大规模多输入多输出(Multiple⁃input multiple⁃output,MIMO)系统中信道状态信息(Channel state information,CSI)反馈开销的日益增长,基于深度学习的CSI反馈网络(如Transformer网络)受到了广泛的关注,是一种非常有应用前景的智能...为应对大规模多输入多输出(Multiple⁃input multiple⁃output,MIMO)系统中信道状态信息(Channel state information,CSI)反馈开销的日益增长,基于深度学习的CSI反馈网络(如Transformer网络)受到了广泛的关注,是一种非常有应用前景的智能传输技术。为此,本文提出了一种基于数据聚类的CSI反馈Transformer网络的简化方法,采用基于聚类的近似矩阵乘法(Approximate matrix multiplication,AMM)技术,以降低反馈过程中Transformer网络的计算复杂度。本文主要对Transformer网络的全连接层计算(等效为矩阵乘法),应用乘积量化(Product quantization,PQ)和MADDNESS等简化方法,分析了它们对计算复杂度和系统性能的影响,并针对神经网络数据的特点进行了算法优化。仿真结果表明,在适当的参数调整下,基于MADDNESS方法的CSI反馈网络性能接近精确矩阵乘法方法,同时可大幅降低计算复杂度。展开更多
The knowledge of bubble profiles in gas-liquid two-phase flows is crucial for analyzing the kinetic processes such as heat and mass transfer, and this knowledge is contained in field data obtained by surface-resolved ...The knowledge of bubble profiles in gas-liquid two-phase flows is crucial for analyzing the kinetic processes such as heat and mass transfer, and this knowledge is contained in field data obtained by surface-resolved computational fluid dynamics (CFD) simulations. To obtain this information, an efficient bubble profile reconstruction method based on an improved agglomerative hierarchical clustering (AHC) algorithm is proposed in this paper. The reconstruction method is featured by the implementations of a binary space division preprocessing, which aims to reduce the computational complexity, an adaptive linkage criterion, which guarantees the applicability of the AHC algorithm when dealing with datasets involving either non-uniform or distorted grids, and a stepwise execution strategy, which enables the separation of attached bubbles. To illustrate and verify this method, it was applied to dealing with 3 datasets, 2 of them with pre-specified spherical bubbles and the other obtained by a surface-resolved CFD simulation. Application results indicate that the proposed method is effective even when the data include some non-uniform and distortion.展开更多
To improve the segmentation quality and efficiency of color image,a novel approach which combines the advantages of the mean shift(MS) segmentation and improved ant clustering method is proposed.The regions which can ...To improve the segmentation quality and efficiency of color image,a novel approach which combines the advantages of the mean shift(MS) segmentation and improved ant clustering method is proposed.The regions which can preserve the discontinuity characteristics of an image are segmented by MS algorithm,and then they are represented by a graph in which every region is represented by a node.In order to solve the graph partition problem,an improved ant clustering algorithm,called similarity carrying ant model(SCAM-ant),is proposed,in which a new similarity calculation method is given.Using SCAM-ant,the maximum number of items that each ant can carry will increase,the clustering time will be effectively reduced,and globally optimized clustering can also be realized.Because the graph is not based on the pixels of original image but on the segmentation result of MS algorithm,the computational complexity is greatly reduced.Experiments show that the proposed method can realize color image segmentation efficiently,and compared with the conventional methods based on the image pixels,it improves the image segmentation quality and the anti-interference ability.展开更多
Modular technology can effectively support the rapid design of products, and it is one of the key technologies to realize mass customization design. With the application of product lifecycle management(PLM) system in ...Modular technology can effectively support the rapid design of products, and it is one of the key technologies to realize mass customization design. With the application of product lifecycle management(PLM) system in enterprises, the product lifecycle data have been effectively managed. However, these data have not been fully utilized in module division, especially for complex machinery products. To solve this problem, a product module mining method for the PLM database is proposed to improve the effect of module division. Firstly, product data are extracted from the PLM database by data extraction algorithm. Then, data normalization and structure logical inspection are used to preprocess the extracted defective data. The preprocessed product data are analyzed and expressed in a matrix for module mining. Finally, the fuzzy c-means clustering(FCM) algorithm is used to generate product modules, which are stored in product module library after module marking and post-processing. The feasibility and effectiveness of the proposed method are verified by a case study of high pressure valve.展开更多
基金Projects(51634010,51676211) supported by the National Natural Science Foundation of ChinaProject(2017SK2253) supported by the Key Research and Development Program of Hunan Province,China
文摘The knowledge of bubble profiles in gas-liquid two-phase flows is crucial for analyzing the kinetic processes such as heat and mass transfer, and this knowledge is contained in field data obtained by surface-resolved computational fluid dynamics (CFD) simulations. To obtain this information, an efficient bubble profile reconstruction method based on an improved agglomerative hierarchical clustering (AHC) algorithm is proposed in this paper. The reconstruction method is featured by the implementations of a binary space division preprocessing, which aims to reduce the computational complexity, an adaptive linkage criterion, which guarantees the applicability of the AHC algorithm when dealing with datasets involving either non-uniform or distorted grids, and a stepwise execution strategy, which enables the separation of attached bubbles. To illustrate and verify this method, it was applied to dealing with 3 datasets, 2 of them with pre-specified spherical bubbles and the other obtained by a surface-resolved CFD simulation. Application results indicate that the proposed method is effective even when the data include some non-uniform and distortion.
基金Project(60874070) supported by the National Natural Science Foundation of China
文摘To improve the segmentation quality and efficiency of color image,a novel approach which combines the advantages of the mean shift(MS) segmentation and improved ant clustering method is proposed.The regions which can preserve the discontinuity characteristics of an image are segmented by MS algorithm,and then they are represented by a graph in which every region is represented by a node.In order to solve the graph partition problem,an improved ant clustering algorithm,called similarity carrying ant model(SCAM-ant),is proposed,in which a new similarity calculation method is given.Using SCAM-ant,the maximum number of items that each ant can carry will increase,the clustering time will be effectively reduced,and globally optimized clustering can also be realized.Because the graph is not based on the pixels of original image but on the segmentation result of MS algorithm,the computational complexity is greatly reduced.Experiments show that the proposed method can realize color image segmentation efficiently,and compared with the conventional methods based on the image pixels,it improves the image segmentation quality and the anti-interference ability.
基金Project(51275362)supported by the National Natural Science Foundation of ChinaProject(2013M542055)supported by China Postdoctoral Science Foundation Funded
文摘Modular technology can effectively support the rapid design of products, and it is one of the key technologies to realize mass customization design. With the application of product lifecycle management(PLM) system in enterprises, the product lifecycle data have been effectively managed. However, these data have not been fully utilized in module division, especially for complex machinery products. To solve this problem, a product module mining method for the PLM database is proposed to improve the effect of module division. Firstly, product data are extracted from the PLM database by data extraction algorithm. Then, data normalization and structure logical inspection are used to preprocess the extracted defective data. The preprocessed product data are analyzed and expressed in a matrix for module mining. Finally, the fuzzy c-means clustering(FCM) algorithm is used to generate product modules, which are stored in product module library after module marking and post-processing. The feasibility and effectiveness of the proposed method are verified by a case study of high pressure valve.