期刊文献+
共找到211篇文章
< 1 2 11 >
每页显示 20 50 100
基于聚类经验模态分解(EEMD)的汶川M_S8.0强震动记录时频特性分析 被引量:9
1
作者 李大虎 赖敏 +2 位作者 何强 马新欣 顾勤平 《地震学报》 CSCD 北大核心 2012年第3期350-362,425,共13页
在2008年5月12日汶川MS8.0地震中,四川数字强震台网共获取了133组三分向加速度记录.本文选取了一些不同断层距的台站所获取的强震动记录进行了处理和分析.在数据处理中,采用基于聚类经验模态分解(EEMD)提取信号时频特性的方法,有效获得... 在2008年5月12日汶川MS8.0地震中,四川数字强震台网共获取了133组三分向加速度记录.本文选取了一些不同断层距的台站所获取的强震动记录进行了处理和分析.在数据处理中,采用基于聚类经验模态分解(EEMD)提取信号时频特性的方法,有效获得了信号能量的时频分布,提取了中心频率、Hilbert能量、最大振幅对应的时频等特性,并与傅里叶变换、小波变换进行了对比研究.研究结果表明,对非线性的强震记录采用聚类经验模态分解(EEMD)能抑制经验模态分解(EMD)中存在的模态混叠问题;与傅里叶变换和小波变换相比发现,HHT边际谱在低频处幅值高于傅里叶谱;与小波变换受到所选取的母波强烈影响不同,HHT直接从强震记录中分离出固有模态函数(IMF),更能反映出原始数据的固有特性,Hilbert谱反映出大部分能量都集中在一定的时间和频率范围内,而小波谱的能量却在频率范围内分布较为广泛.因此,基于EEMD的HHT在客观性和分辨率方面都具有明显的优越性,能提取到更多强震加速度记录的时频特性. 展开更多
关键词 经验模态分解 希尔伯特-黄变换 强震动加速度记录 模态混叠 时频特性Hilbert谱
在线阅读 下载PDF
基于改进集合经验模态分解和强化视觉Transformer模型的风电机组故障预警
2
作者 许伯强 王彪 +1 位作者 孙丽玲 尹彦博 《电工技术学报》 北大核心 2025年第20期6537-6551,共15页
现有基于数据采集与监视控制系统(SCADA)数据的风电机组故障预警方法往往只针对风电机组的某一位置或者某一类型故障,无法对风电机组整体进行较为全面的预警。针对这一问题,该文提出了基于改进集合经验模态分解(EEMD)和强化的视觉转换器... 现有基于数据采集与监视控制系统(SCADA)数据的风电机组故障预警方法往往只针对风电机组的某一位置或者某一类型故障,无法对风电机组整体进行较为全面的预警。针对这一问题,该文提出了基于改进集合经验模态分解(EEMD)和强化的视觉转换器(ViT)模型的风电机组故障预警方法。首先,对EEMD算法进行改进,分解得到的数据包含不同时间尺度的特征信息,且使得分解过程中不发生信息泄露。采用改进的EEMD算法解构风电机组SCADA多维数据之后,构建反映风电机组实时状态的特征矩阵。然后,结合非对称卷积模块对ViT模型进行强化,并加入可变形注意力模块,在降低计算复杂度的同时使得模型可以充分捕捉不同维度与时间尺度的风电机组特征。最后,将特征矩阵输入强化的ViT模型以获得预测结果,与实际值对比得到残差矩阵,依此进行风电机组故障的预警。经风电机组实际运行SCADA数据验证,该文提出的风电机组故障预警方法准确有效,并可通过残差矩阵进一步辨识风电机组发生的故障类型。 展开更多
关键词 风电机组 数据采集与监视控制系统(SCADA)数据 故障预警 改进集合经验模态分解(eemd) 强化ViT模型
在线阅读 下载PDF
基于密度聚类模态分解的卷积神经网络和长短期记忆网络短期风电功率预测 被引量:3
3
作者 崔明勇 董文韬 卢志刚 《现代电力》 北大核心 2024年第4期631-641,共11页
近年来,随着碳达峰和碳中和“双碳”战略目标的提出,风力发电已成为可再生能源发电的关键部分。为提高风电功率短期预测的准确度,提出基于密度聚类与自适应噪声完备集成经验模态分解(complete ensemble empirical mode decomposition wi... 近年来,随着碳达峰和碳中和“双碳”战略目标的提出,风力发电已成为可再生能源发电的关键部分。为提高风电功率短期预测的准确度,提出基于密度聚类与自适应噪声完备集成经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)和卷积神经网络与长短期记忆网络结合的短期风电功率预测方法。首先,利用密度聚类将风电功率与天气特征分成不同类别的数据集,通过自适应噪声完备集成经验模态分解算法将不同类别的数据进行频域分解得到子序列分量。以此为基础,将不同的子序列分量与天气特征进行特征选择,输入到卷积神经网络与长短期记忆网络的预测模型。最后,将不同的预测结果进行叠加得到最终的预测结果。整个预测过程通过聚类、分解和特征选择,有效提高了短期风电功率预测的准确度。 展开更多
关键词 风电功率预测 密度 自适应噪声完备集成经验模态分解 卷积神经网络 长短期记忆网络
在线阅读 下载PDF
基于谱聚类和多元变分模态分解的风电机组功率预测 被引量:4
4
作者 徐睿麟 郑建勇 +1 位作者 梅飞 解洋 《电网技术》 EI CSCD 北大核心 2024年第5期2043-2053,I0066,共12页
传统的风电出力预测方法通常未能充分考虑机组之间的相似性和差异性,忽视了环境条件对风电出力的影响以及关键特征提取方法单一等问题。因此,提出了一种基于谱聚类和多元变分模态分解的人工神经网络风电出力预测方法。首先,为捕捉不同... 传统的风电出力预测方法通常未能充分考虑机组之间的相似性和差异性,忽视了环境条件对风电出力的影响以及关键特征提取方法单一等问题。因此,提出了一种基于谱聚类和多元变分模态分解的人工神经网络风电出力预测方法。首先,为捕捉不同机组之间的相似性和差异性,对风速和风向进行谱聚类,构建风速-风向二维标签簇,并选取每个簇的中心机组以表征该簇的出力特征。接着,为更全面地描述出力与环境条件之间的关系,采用变分模态分解算法对聚类中心机组出力进行分解,同时将出力与风速、风向数据进行多元变分模态分解,得到不同频率的模态成分。最后,在预测阶段引入基于注意力机制的深度学习网络,对特征模态添加注意力机制后输入卷积长短期神经网络模型进行训练和预测,并通过误差修正模块得到同簇其他机组的预测结果。该方法相较传统方法在预测精确度上有明显提升,具有一定的实用性和有效性。 展开更多
关键词 风电预测 多元变分模态分解 卷积长短期神经网络 注意力机制
在线阅读 下载PDF
新能源汽车销量预测的分解-聚类-集成方法研究
5
作者 王方 赵桉坤 +1 位作者 卜皓玥 余乐安 《运筹与管理》 北大核心 2025年第2期38-43,I0023-I0029,共13页
新能源汽车销量预测,对于政府产业布局、车企转型发展和能源部门减碳决策均具有重要意义。为提升新能源汽车月度销量预测的精度,基于“分解-集成”的建模思想,遵循“分而治之”的原则,构建了“分解-聚类-集成”预测框架。首先,通过集合... 新能源汽车销量预测,对于政府产业布局、车企转型发展和能源部门减碳决策均具有重要意义。为提升新能源汽车月度销量预测的精度,基于“分解-集成”的建模思想,遵循“分而治之”的原则,构建了“分解-聚类-集成”预测框架。首先,通过集合经验模态分解(EEMD)算法,将新能源汽车月度销量的时间序列数据分解为多个分量序列。其次,采用样本熵和K-means聚类法对分解得到的多个分量进行集聚,得到高频、中频、低频三类不同的分量序列集。然后,使用长短期记忆网络(LSTM)、差分整合移动平均自回归模型(ARIMA)和灰色预测GM(1,1)模型,分别对三类分量序列进行预测。最后,以线性加权算法进行集成,得到新能源汽车月度销量的预测结果。基于2012年1月至2022年5月我国新能源汽车销量数据的实证分析表明,提出的“EEMD-K-LSTM/ARIMA/GM(1,1)”预测模型较传统单模型和“分解集成”模型更优。 展开更多
关键词 新能源汽车 销量预测 eemd分解 K-MEANS 分解-集成
在线阅读 下载PDF
利用储能系统平滑光伏波动的模糊聚类经验模态分解方法 被引量:26
6
作者 杨锡运 曹超 +1 位作者 任杰 高峰 《高电压技术》 EI CAS CSCD 北大核心 2016年第7期2127-2133,共7页
为了平滑光伏输出功率,提出一种基于模糊聚类经验模态分解(ensemble empirical mode decomposition,EEMD)的储能系统控制方法。通过对光伏信号的频谱分析,利用EEMD滤波分成高频和低频两部分,光伏低频分量作为光伏并网功率信号,高频信号... 为了平滑光伏输出功率,提出一种基于模糊聚类经验模态分解(ensemble empirical mode decomposition,EEMD)的储能系统控制方法。通过对光伏信号的频谱分析,利用EEMD滤波分成高频和低频两部分,光伏低频分量作为光伏并网功率信号,高频信号接入储能系统吸收;使用储能电池荷电状态值、平滑波动率值状态作为约束条件,利用模糊控制算法,自适应在线调整EEMD滤波阶数,通过模糊自适应控控制器,实现了更好平滑光伏波动。对比定阶EEMD光伏功率储能控制策略,仿真实例表明,该方法可以充分使用储能系统平抑光伏功率波动,稳定储能荷电状态。 展开更多
关键词 经验模态分解 功率平滑 模糊控制 波动率 荷电状态 储能 控制策略
在线阅读 下载PDF
基于聚类经验模态分解和最小二乘支持向量机的短期风速组合预测 被引量:90
7
作者 王贺 胡志坚 +3 位作者 张翌晖 李晨 杨楠 王战胜 《电工技术学报》 EI CSCD 北大核心 2014年第4期237-245,共9页
从分析风速序列的非线性和非平稳性特征出发,将一种基于聚类经验模态分解(EEMD)和最小二乘支持向量机(LSSVM)的组合预测模型引入到风速预测中。首先使用聚类经验模态分解将风速序列分解为一组相对平稳的子序列,以减轻不同趋势信息间的... 从分析风速序列的非线性和非平稳性特征出发,将一种基于聚类经验模态分解(EEMD)和最小二乘支持向量机(LSSVM)的组合预测模型引入到风速预测中。首先使用聚类经验模态分解将风速序列分解为一组相对平稳的子序列,以减轻不同趋势信息间的相互影响;然后运用最小二乘支持向量机对各子序列分别建模预测,为降低预测风险,使用自适应扰动粒子群算法(ADPSO)和模型学习效果反馈机制对LSSVM预测模型的输入维数和超参数进行联合优化;最后将各个子序列的预测结果叠加得到预测风速。实例研究表明,本文所提的组合预测模型可以有效挖掘风速序列特性,具有较高的预测精度。 展开更多
关键词 风速 预测 经验模态分解 最小二乘支持向量机 自适应扰动粒子群算法学习效果反馈
在线阅读 下载PDF
基于多元经验模态分解互近似熵及GG聚类的轴承故障诊断 被引量:9
8
作者 张淑清 李威 +3 位作者 张立国 胡永涛 钱磊 姜万录 《中国机械工程》 EI CAS CSCD 北大核心 2016年第24期3362-3367,共6页
提出了一种基于多元经验模态分解(Multi-EMD)、互近似熵和GG聚类的滚动故障轴承诊断方法。首先,将振动信号进行多元经验模态分解,得到若干个内禀模态函数(IMF)分量和一个趋势项。然后,将IMF分量分别与原始信号进行相关性分析,筛选出前7... 提出了一种基于多元经验模态分解(Multi-EMD)、互近似熵和GG聚类的滚动故障轴承诊断方法。首先,将振动信号进行多元经验模态分解,得到若干个内禀模态函数(IMF)分量和一个趋势项。然后,将IMF分量分别与原始信号进行相关性分析,筛选出前7个含主要特征信息的IMF分量,并将筛选的IMF分量的互近似熵作为特征向量。最后,将特征向量输入到GG模糊分类器中进行聚类识别。通过聚类三维图,对两种算法机械运行的4种状态进行了对比,验证了多元经验模态分解方法不仅可解决采样的不均衡问题,而且可解决EMD算法聚类的混叠问题。 展开更多
关键词 轴承故障诊断 多元经验模态分解 互近似熵 GG
在线阅读 下载PDF
基于聚类经验模态分解-样本熵和优化极限学习机的风电功率多步区间预测 被引量:23
9
作者 张亚超 刘开培 +1 位作者 秦亮 方仍存 《电网技术》 EI CSCD 北大核心 2016年第7期2045-2051,共7页
针对风电功率序列的不确定性和随机性特征,提出一种基于聚类经验模态分解-样本熵和优化极限学习机的多步区间预测模型。首先,利用聚类经验模态分解-样本熵方法将原始风电功率序列分解为一系列复杂度差异明显的子序列。然后,分别对各子... 针对风电功率序列的不确定性和随机性特征,提出一种基于聚类经验模态分解-样本熵和优化极限学习机的多步区间预测模型。首先,利用聚类经验模态分解-样本熵方法将原始风电功率序列分解为一系列复杂度差异明显的子序列。然后,分别对各子序列建立基于上下界直接估量的区间预测模型。为分析不同区间构造的差异,提出一种体现训练目标值偏离区间范围影响的新型区间预测评估指标作为目标函数,并采用基于混沌萤火虫结合多策略融合自适应差分进化的优化算法寻求其最优解,以提高模型预测性能。最后,以某一风电场实际功率数据为算例,验证了所提模型能获得可靠优良的多步区间预测结果,可为风电功率多步不确定性预测提供一种新的有效途径。 展开更多
关键词 多步区间预测 经验模态分解-样本熵 极限学习机 多策略自适应差分进化
在线阅读 下载PDF
基于聚类经验模态分解的地球天然脉冲电磁场时频与能量谱分析:以芦山Ms7.0地震为例 被引量:7
10
作者 郝国成 龚婷 +3 位作者 董浩斌 V.G.SIBGATULIN 陈忠昌 Alexey KABANOV 《地学前缘》 EI CAS CSCD 北大核心 2015年第5期231-238,共8页
针对地球天然脉冲电磁场信号的非平稳、非线性特点,本文采用基于聚类经验模态分解(EEMD)提取信号时频特性的方法,有效获得了芦山MS7.0地震前地球天然脉冲电磁场信号的时频分布特性、瞬时能量谱、能量集中分布的频段、最大振幅对应的时... 针对地球天然脉冲电磁场信号的非平稳、非线性特点,本文采用基于聚类经验模态分解(EEMD)提取信号时频特性的方法,有效获得了芦山MS7.0地震前地球天然脉冲电磁场信号的时频分布特性、瞬时能量谱、能量集中分布的频段、最大振幅对应的时频分布等特性。对比经验模态分解(EMD)的希尔伯特-黄变换(HHT)方法,EEMD有效抑制了以往EMD分解过程中所出现的模态混叠问题。文章还将EEMD和傅里叶变换、小波变换进行了对比研究。结果表明,对于非平稳的地球天然脉冲电磁场数据,采用EEMD分解的HHT方法更能反映出原始数据的多种固有特性,便于进一步了解地震前地球天然脉冲电磁场的特点。 展开更多
关键词 经验模态分解 希尔伯特-黄变换 时频分析 地球天然脉冲电磁场
在线阅读 下载PDF
基于聚类经验模态分解和差分熵的输电线路故障测距研究 被引量:10
11
作者 张成 王昕 +1 位作者 郑益慧 李立学 《电测与仪表》 北大核心 2018年第21期86-92,共7页
为提高输电线路的故障测距精度,提出了一种基于聚类经验模型分解(EEMD)和差分熵(DE)的输电线路故障行波测距方法。首先利用改进的差分熵信号处理方法对输电线路电流进行熵值计算,通过与正常电流熵值的对比,判断电流是否发生突变。然后采... 为提高输电线路的故障测距精度,提出了一种基于聚类经验模型分解(EEMD)和差分熵(DE)的输电线路故障行波测距方法。首先利用改进的差分熵信号处理方法对输电线路电流进行熵值计算,通过与正常电流熵值的对比,判断电流是否发生突变。然后采用EEMD分解对发生突变的故障电流进行处理,有效去除故障信号中的噪声,避免模态混叠,获取准确反映故障信息的IMF分量。随后对分量实行差分熵方法中的差分分析,将电流的变化幅度进行有效量化,并建立每个信号点的变化程度与时间的对应关系,从而解决波头位置难以确定的问题,获得故障初始行波到达每个监测点的准确时间。最后利用行波双端法,实现输电线路的故障测距。仿真结果表明,该方法能够较好地解决故障测距时存在的信号噪声和波头测量时间不准确的问题,有效提高故障测距的精度。 展开更多
关键词 输电线路 经验模型分解 差分熵 故障测距
在线阅读 下载PDF
基于相似日聚类及模态分解的短期光伏发电功率组合预测研究 被引量:18
12
作者 龙小慧 秦际赟 +1 位作者 张青雷 段建国 《电网技术》 EI CSCD 北大核心 2024年第7期2948-2957,I0087-I0088,共12页
短期光伏发电功率预测是电站制定发电计划并进行调度的重要组成部分,有助于电力系统的动态稳定。针对光伏时序预测中存在的噪声干扰及单一模型预测效果不稳定等问题,该文提出一种基于改进型自适应白噪声的完全集合经验模态分解(improved... 短期光伏发电功率预测是电站制定发电计划并进行调度的重要组成部分,有助于电力系统的动态稳定。针对光伏时序预测中存在的噪声干扰及单一模型预测效果不稳定等问题,该文提出一种基于改进型自适应白噪声的完全集合经验模态分解(improved complete ensemble empirical mode decomposition with adaptive noise,ICEEMDAN)的组合预测模型。首先,利用相关系数提取重要气象特征,并采用模糊C均值聚类(fuzzy C-means clustering,FCM)将原始数据集划分为晴天、晴转多云和雨天。其次,每种相似日以最后一天为待预测日,其余为历史训练集;利用ICEEMDAN将历史训练集分解成若干个较为规律的子序列,并用排列熵(permutation entropy,PE)对各子序列进行重构。最后,高频项采用由卷积神经网络(convolutional neural network,CNN)、(bidirectional gated recurrent unit,Bi GRU)双向门控循环单元与注意力机制组合而成的CNN-BiGRU-ATTENTION神经网络预测,低频项和趋势项采用最小二乘支持向量回归机(least squares support vector regression,LSSVR)进行预测,将预测结果叠加得到最终光伏发电功率预测值。通过实例验证:该文组合模型在不同天气条件下,可以解决单一模型预测精度低、预测效果不稳定等问题;相比其他模态分解,能够更精确地预测波动较大的局部特征。 展开更多
关键词 光伏发电 模态分解 相似日 卷积神经网络 最小二乘支持向量回归机 注意力机制
在线阅读 下载PDF
基于统计特征矢量符号值和聚类经验模态分解的短时电能质量扰动信号分析 被引量:1
13
作者 欧阳静 张立彬 +2 位作者 潘国兵 徐红伟 陈金鑫 《高技术通讯》 北大核心 2017年第11期929-937,共9页
研究了希尔伯特-黄变换(HHT)方法分析电能质量扰动信号的不足,提出了一种统计特征矢量符号化(SFVS)算法与聚类经验模态分解(EEMD)相结合的短时电能质量扰动信号分析方法。该方法采用循环周期比较的欧氏距离的边界检测算法来对电能质量... 研究了希尔伯特-黄变换(HHT)方法分析电能质量扰动信号的不足,提出了一种统计特征矢量符号化(SFVS)算法与聚类经验模态分解(EEMD)相结合的短时电能质量扰动信号分析方法。该方法采用循环周期比较的欧氏距离的边界检测算法来对电能质量扰动信号的突变时间进行检测,以突变时刻为边界点将原始电能质量信号进行划分,再用EEMD方法对区块划分信号进行分解,有效抑制模态混叠,以改善信号分解性能。测试结果表明,该方法能够实现突变时刻的准确检测,对电能质量扰动信号中的各种成分进行准确分析。 展开更多
关键词 短时电能质量扰动 暂态分析 统计特征矢量符号化(SFVS) 经验模态分解(eemd) 模态混叠
在线阅读 下载PDF
基于柴油机曲轴瞬时转速信号EEMD分解的失火故障诊断 被引量:2
14
作者 黄英 李准 +2 位作者 王健 刘辰 胡博睿 《北京理工大学学报》 北大核心 2025年第4期384-390,共7页
对于十缸V型柴油机单缸失火和双缸失火这两类故障,提出了基于曲轴瞬时转速信号的集合经验模态分解的故障诊断策略.该策略考虑到多个转速工况对失火故障诊断的影响,根据柴油机喷油提前角将实车实时采集到该转速下的数据划分为正常、单缸... 对于十缸V型柴油机单缸失火和双缸失火这两类故障,提出了基于曲轴瞬时转速信号的集合经验模态分解的故障诊断策略.该策略考虑到多个转速工况对失火故障诊断的影响,根据柴油机喷油提前角将实车实时采集到该转速下的数据划分为正常、单缸失火和双缸失火这三个工况区间.通过多循环平均方法对三个工况区间数据进行预处理,并通过集合经验模态分解方法分解,该方法能自适应地将曲轴转速信号分解为若干个本征模态函数.通过集合经验模态分解得到每个本征模态函数幅值的异常波动,确定包含故障信息的本征模态函数,为了进一步提取特征,需对该本征模态函数进行快速傅里叶变换,根据主频分量的幅值,得到故障特征.最后在多个转速工况下进行上述诊断流程,得出各个转过速工况的诊断准确率,实现了诊断算法的转速工况敏感性分析.实验结果表明该方法能有效提取故障特征,实现了十缸柴油机基于多个瞬时转速的失火故障诊断. 展开更多
关键词 柴油机 失火故障诊断 集合经验模态分解(eemd) 曲轴瞬时转速 特征提取 本征模态函数(IMFs) 快速傅里叶变换(FFT)
在线阅读 下载PDF
基于聚类经验模态分解的CNN-LSTM超短期电力负荷预测 被引量:109
15
作者 刘亚珲 赵倩 《电网技术》 EI CSCD 北大核心 2021年第11期4444-4451,共8页
为了减少复杂环境因素对电力负荷超短期预测效果的影响,提高算法的预测精度和运算效率,该文提出一种基于聚类经验模态分解(clusterempiricalmodedecomposition,CEMD)的卷积神经网络和长短期记忆网络(convolutional neural network and l... 为了减少复杂环境因素对电力负荷超短期预测效果的影响,提高算法的预测精度和运算效率,该文提出一种基于聚类经验模态分解(clusterempiricalmodedecomposition,CEMD)的卷积神经网络和长短期记忆网络(convolutional neural network and long short term memory network,CNNLSTM)混合预测算法。该算法首先通过经验模态分解法将负荷数据分解为平稳性好、规律性强的若干本征模态函数(intrinsic mode functions,IMF)和残差(residual,Res)。其次为了简化后续模型的计算体量,运用k均值聚类方法对分解所得的各分量进行分组集成,同时分析不同聚类数对应的预测效果,选取最优聚类标签构造神经网络输入数据。之后将各组数据分别输入到CNN-LSTM混合神经网络中,利用CNN挖掘数据间的特征形成特征向量,并将其输入到LSTM中进行预测。最后将所有预测结果进行线性相加得到完整预测负荷。通过在真实负荷上进行验证并与现有模型进行比较,所提方法具有更高的预测精度。 展开更多
关键词 超短期负荷预测 经验模态分解 卷积神经网络 长短期记忆网络
在线阅读 下载PDF
基于聚类SABO-VMD和组合神经网络的短期光伏发电功率预测 被引量:4
16
作者 冯建铭 希望·阿不都瓦依提 蔺红 《太阳能学报》 北大核心 2025年第2期357-366,共10页
针对光伏发电预测单一模型处于不同天气状况时预测精度不高等问题,建立以卷积神经网络(CNN)和双向长短期记忆网络(BiLSTM)为基础的组合神经网络模型。提出一种基于鱼鹰优化算法(OOA),用以优化组合神经网络参数。此外引入注意力机制(Atte... 针对光伏发电预测单一模型处于不同天气状况时预测精度不高等问题,建立以卷积神经网络(CNN)和双向长短期记忆网络(BiLSTM)为基础的组合神经网络模型。提出一种基于鱼鹰优化算法(OOA),用以优化组合神经网络参数。此外引入注意力机制(Attention)突出强相关性因素的影响。采用高斯混合模型聚类(GMM)划分历史光伏数据为数个天气类型,并提出基于减法平均的优化算法(SABO)优化变分模态分解(VMD)参数,实现对各天气类型数据的分解。实验结果表明:基于SABO-VMD优化数据分解参数能有效提高预测精度;经实验对比分析,该文所提模型精度明显更高。 展开更多
关键词 光伏功率 变分模态分解 神经网络 功率预测 注意力机制 高斯混合模型
在线阅读 下载PDF
基于经验模态分解和超球多类支持向量机的滚动轴承故障诊断方法 被引量:68
17
作者 康守强 王玉静 +2 位作者 杨广学 宋立新 V.I.MIKULOVICH 《中国电机工程学报》 EI CSCD 北大核心 2011年第14期96-102,共7页
滚动轴承故障定位,特别是对其性能退化程度的诊断可以更有效地进行设备维护以降低停机率。提出了对滚动轴承不同故障位置及性能退化程度的非平稳振动信号进行特征提取和智能分类的故障诊断方法。该方法对各状态振动信号进行经验模态分解... 滚动轴承故障定位,特别是对其性能退化程度的诊断可以更有效地进行设备维护以降低停机率。提出了对滚动轴承不同故障位置及性能退化程度的非平稳振动信号进行特征提取和智能分类的故障诊断方法。该方法对各状态振动信号进行经验模态分解,得到一系列固有模态函数和一个残余分量。经验模态分解方法具有分解自适应性和分解唯一性。对每个固有模态函数建立自回归模型,分别采用Yule-Walker和Ulrych-Clayton两种方法求得模型参数和残差方差,并以此作为各类状态信号的特征矩阵,输入到改进的超球多类支持向量机分类器,判断滚动轴承故障位置及性能退化程度。实验结果表明,提出的方法可同时实现滚动轴承故障位置及性能退化程度的智能诊断,且基于经验模态分解结合自回归模型的Ulrych-Clayton参数估计进行特征提取的诊断方法识别率更高。 展开更多
关键词 非平稳信号 经验模态分解 支持向量机 滚动轴承 性能退化程度
在线阅读 下载PDF
基于经验模式分解的聚类树方法及其在同调机组分群中的应用 被引量:22
18
作者 史坤鹏 穆钢 +1 位作者 李婷 吕陆 《电网技术》 EI CSCD 北大核心 2007年第22期21-25,共5页
提出了一种基于经验模式分解(empirical mode decomposition,EMD)的聚类树分群方法。在系统聚类分析的基础上,提出了基于权重距离的综合聚类指标,以各机功角轨迹之间距离最小为准则,实现了多机系统同调机组的合理分群。为解决电力系统... 提出了一种基于经验模式分解(empirical mode decomposition,EMD)的聚类树分群方法。在系统聚类分析的基础上,提出了基于权重距离的综合聚类指标,以各机功角轨迹之间距离最小为准则,实现了多机系统同调机组的合理分群。为解决电力系统受扰后动态行为非平稳、非线性的问题,文中采用EMD方法对原始数据进行预处理。EPRI-36节点系统计算结果表明,在不太严重的扰动下和允许的误差范围内,各种扰动下均可得到基本一致的聚类分群结果,从而佐证了该方法的有效性。 展开更多
关键词 功角轨迹 加权距离 同调分群 经验模式分解(EMD)
在线阅读 下载PDF
变分模态分解消噪与核模糊C均值聚类相结合的滚动轴承故障识别方法 被引量:24
19
作者 姜万录 王浩楠 +2 位作者 朱勇 王振威 董克岩 《中国机械工程》 EI CAS CSCD 北大核心 2017年第10期1215-1220,1226,共7页
提出了一种变分模态分解消噪与核模糊C均值聚类相结合的滚动轴承故障识别方法。首先,对实测振动信号进行处理,得到VMD的参数;然后,对信号进行VMD分解,得到一系列限带内禀模态函数(BIMF)分量,筛选并叠加组成重构信号;第三步,计算重构信... 提出了一种变分模态分解消噪与核模糊C均值聚类相结合的滚动轴承故障识别方法。首先,对实测振动信号进行处理,得到VMD的参数;然后,对信号进行VMD分解,得到一系列限带内禀模态函数(BIMF)分量,筛选并叠加组成重构信号;第三步,计算重构信号的样本熵和均方根值作为特征向量,从而得到训练样本和测试样本的特征向量集;第四步,通过KFCM聚类方法对训练样本特征向量集进行聚类分析,得到四种类型信号的聚类中心;最后根据测试样本特征向量与训练样本聚类中心欧式距离最小的原则识别故障类型。此外,将振动信号用经验模态分解(EMD)方法进行消噪,再用KFCM聚类进行分类识别,将两种方法的识别效果进行对比,结果表明所提方法的故障识别效果要优于EMD消噪和KFCM聚类相结合方法的识别效果。 展开更多
关键词 变分模态分解 核模糊C均值 样本熵 故障识别
在线阅读 下载PDF
融合三支聚类与分解集成学习的股票价格预测模型 被引量:2
20
作者 白军成 孙秉珍 +2 位作者 郭誉齐 陈有为 郭建峰 《运筹与管理》 CSSCI CSCD 北大核心 2024年第8期213-218,共6页
准确的趋势判断与实时价格预测是获得理想投资收益的有效途径。现实的金融市场受客观经济环境变化,投资者预期回报以及其他潜在因素影响,使得传统预测方法面临较多的挑战和压力。如何在不确定的环境中发现一种可靠的预测工具,提高预测... 准确的趋势判断与实时价格预测是获得理想投资收益的有效途径。现实的金融市场受客观经济环境变化,投资者预期回报以及其他潜在因素影响,使得传统预测方法面临较多的挑战和压力。如何在不确定的环境中发现一种可靠的预测工具,提高预测的准确性,将是值得深入探讨的科学问题。为了获得准确的预测,帮助投资者赢得最大利润,本文引入分解集成思想和三支决策理论,提出了一种基于三支聚类和分解集成的复合预测方法。首先,使用互补集成经验模态分解方法将原始时间序列分解成若干个相对平稳的子序列,实现降低原始时间序列复杂性的同时挖掘了隐藏的信息。其次,为了针对性地处理不同属性的子序列,构建了基于贝叶斯风险决策的概率粗糙集进行三支聚类。接着,为了避免输入信息的欠缺或者冗余信息的干扰,采用基于相空间重构的特征选择方法确定不同神经网络的输入结构。最后,将提出的方法应用于美股ANY价格预测和国际、国内的重要股票指数以及其成分股预测验证其有效性和实用性。同时为把粒计算思想方法与分解集成融合,构建复杂动态数据预测决策模型与方法进行了有益的尝试和探讨。此外,研究结果将为投资者的实际投资决策提供科学的支持与参考。 展开更多
关键词 三支 互补集成经验模态分解 股票价格预测
在线阅读 下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部