针对空谱信息中普遍存在的异常干扰现象,提出了基于空谱联合聚类的自适应核协同表示高光谱异常目标探测算法.算法充分发挥了基于密度的聚类算子(Density-Based Spatial Clustering of Applications with Noise,DBSCAN)对于异常点的筛选...针对空谱信息中普遍存在的异常干扰现象,提出了基于空谱联合聚类的自适应核协同表示高光谱异常目标探测算法.算法充分发挥了基于密度的聚类算子(Density-Based Spatial Clustering of Applications with Noise,DBSCAN)对于异常点的筛选特性,在DBSCAN聚类去除异常波谱的基础上,采用分波段子集随机投影变换对数据降维处理,以减少谱噪声和谱冗余,并采用DBSCAN聚类消除了局部背景像元中的杂乱点对协同探测算法结果的干扰.研究了背景离散度对核参选择的影响,比较了不同的核估计方法,并提出基于平均差的自适应核协同算法.采用该方法对AVIRIS和ROSIS的三组数据进行仿真实验并与现有算法进行了对比,结果表明该算法表现出较好的探测性能.展开更多
As to the fact that it is difficult to obtain analytical form of optimal sampling density and tracking performance of standard particle probability hypothesis density(P-PHD) filter would decline when clustering algori...As to the fact that it is difficult to obtain analytical form of optimal sampling density and tracking performance of standard particle probability hypothesis density(P-PHD) filter would decline when clustering algorithm is used to extract target states,a free clustering optimal P-PHD(FCO-P-PHD) filter is proposed.This method can lead to obtainment of analytical form of optimal sampling density of P-PHD filter and realization of optimal P-PHD filter without use of clustering algorithms in extraction target states.Besides,as sate extraction method in FCO-P-PHD filter is coupled with the process of obtaining analytical form for optimal sampling density,through decoupling process,a new single-sensor free clustering state extraction method is proposed.By combining this method with standard P-PHD filter,FC-P-PHD filter can be obtained,which significantly improves the tracking performance of P-PHD filter.In the end,the effectiveness of proposed algorithms and their advantages over other algorithms are validated through several simulation experiments.展开更多
文摘针对空谱信息中普遍存在的异常干扰现象,提出了基于空谱联合聚类的自适应核协同表示高光谱异常目标探测算法.算法充分发挥了基于密度的聚类算子(Density-Based Spatial Clustering of Applications with Noise,DBSCAN)对于异常点的筛选特性,在DBSCAN聚类去除异常波谱的基础上,采用分波段子集随机投影变换对数据降维处理,以减少谱噪声和谱冗余,并采用DBSCAN聚类消除了局部背景像元中的杂乱点对协同探测算法结果的干扰.研究了背景离散度对核参选择的影响,比较了不同的核估计方法,并提出基于平均差的自适应核协同算法.采用该方法对AVIRIS和ROSIS的三组数据进行仿真实验并与现有算法进行了对比,结果表明该算法表现出较好的探测性能.
文摘As to the fact that it is difficult to obtain analytical form of optimal sampling density and tracking performance of standard particle probability hypothesis density(P-PHD) filter would decline when clustering algorithm is used to extract target states,a free clustering optimal P-PHD(FCO-P-PHD) filter is proposed.This method can lead to obtainment of analytical form of optimal sampling density of P-PHD filter and realization of optimal P-PHD filter without use of clustering algorithms in extraction target states.Besides,as sate extraction method in FCO-P-PHD filter is coupled with the process of obtaining analytical form for optimal sampling density,through decoupling process,a new single-sensor free clustering state extraction method is proposed.By combining this method with standard P-PHD filter,FC-P-PHD filter can be obtained,which significantly improves the tracking performance of P-PHD filter.In the end,the effectiveness of proposed algorithms and their advantages over other algorithms are validated through several simulation experiments.