期刊文献+
共找到32篇文章
< 1 2 >
每页显示 20 50 100
基于数据流的漂移性多光斑聚类算法研究
1
作者 申超屹 刘怡 +3 位作者 王雪梅 马蒙蒙 曾晶 刘东升 《激光技术》 北大核心 2025年第5期710-717,共8页
为了降低多接入通信系统误比特率,基于四象限探测器的多目标光斑分辨技术,分析了通信激光光斑数据流的特点,对3种传统聚类算法进行了比较。对在多光斑分辨方面表现出更好综合效果的k均值聚类算法进行了扩展,提出了基于数据流的漂移性多... 为了降低多接入通信系统误比特率,基于四象限探测器的多目标光斑分辨技术,分析了通信激光光斑数据流的特点,对3种传统聚类算法进行了比较。对在多光斑分辨方面表现出更好综合效果的k均值聚类算法进行了扩展,提出了基于数据流的漂移性多光斑聚类算法。首先通过初始聚类自适应选择最优簇数,然后对新光斑数据进行实时漂移检测和聚类,并对算法的分类判决参数进行实时更新。结果表明,该算法解决了光斑漂移下的多光斑分辨问题,光斑分辨精确度相比传统算法有显著提高,稳定在90%以上。该研究提高了通信质量,为多接入通信的实现提供了算法支撑。 展开更多
关键词 光通信 多光斑分辨 数据流 光斑漂移
在线阅读 下载PDF
一种基于密度的空间数据流在线聚类算法 被引量:28
2
作者 于彦伟 王沁 +1 位作者 邝俊 何杰 《自动化学报》 EI CSCD 北大核心 2012年第6期1051-1059,共9页
为了解决空间数据流中任意形状簇的聚类问题,提出了一种基于密度的空间数据流在线聚类算法(On-line density-based clustering algorithm for spatial data stream,OLDStream),该算法在先前聚类结果上聚类增量空间数据,仅对新增空间点... 为了解决空间数据流中任意形状簇的聚类问题,提出了一种基于密度的空间数据流在线聚类算法(On-line density-based clustering algorithm for spatial data stream,OLDStream),该算法在先前聚类结果上聚类增量空间数据,仅对新增空间点及其满足核心点条件的邻域数据做局部聚类更新,降低聚类更新的时间复杂度,实现对空间数据流的在线聚类.OLDStream算法具有快速处理大规模空间数据流、实时获取全局任意形状的聚类簇结果、对数据流的输入顺序不敏感、并能发现孤立点数据等优势.在真实数据和合成数据上的综合实验验证了算法的聚类效果、高效率性和较高的可伸缩性,同时实验结果的统计分析显示仅有4%的空间点消耗最坏运行时间,对每个空间点的平均聚类时间约为0.033ms. 展开更多
关键词 空间数据挖掘 聚类数据流 基于密度的 在线算法 噪声处理
在线阅读 下载PDF
一种基于时态密度的倾斜分布数据流聚类算法 被引量:17
3
作者 杨宁 唐常杰 +2 位作者 王悦 陈瑜 郑皎凌 《软件学报》 EI CSCD 北大核心 2010年第5期1031-1041,共11页
为解决倾斜分布的数据流聚类这一难题,提出了时态密度概念,给出其度量,揭示了其包括可增量计算在内的一系列数学性质;设计了时态密度树结构,提高了聚类时的存储和检索效率;设计了能够以实时或异步方式捕捉数据倾斜分布的数据流时态特征... 为解决倾斜分布的数据流聚类这一难题,提出了时态密度概念,给出其度量,揭示了其包括可增量计算在内的一系列数学性质;设计了时态密度树结构,提高了聚类时的存储和检索效率;设计了能够以实时或异步方式捕捉数据倾斜分布的数据流时态特征的聚类算法TDCA(temporal density based clustering algorithm),其时间复杂度为O(c×m×lgm).实验结果表明,该算法不仅有较强的功能,而且具有较好的规模可伸缩性. 展开更多
关键词 数据流 时态密度 倾斜分布
在线阅读 下载PDF
一种基于数据流的软子空间聚类算法 被引量:31
4
作者 朱林 雷景生 +1 位作者 毕忠勤 杨杰 《软件学报》 EI CSCD 北大核心 2013年第11期2610-2627,共18页
针对高维数据的聚类研究表明,样本在不同数据簇往往与某些特定的数据特征子集相对应.因此,子空间聚类技术越来越受到关注.然而,现有的软子空间聚类算法都是基于批处理技术的聚类算法,不能很好地应用于高维数据流或大规模数据的聚类研究... 针对高维数据的聚类研究表明,样本在不同数据簇往往与某些特定的数据特征子集相对应.因此,子空间聚类技术越来越受到关注.然而,现有的软子空间聚类算法都是基于批处理技术的聚类算法,不能很好地应用于高维数据流或大规模数据的聚类研究中.为此,利用模糊可扩展聚类框架,与熵加权软子空间聚类算法相结合,提出了一种有效的熵加权流数据软子空间聚类算法——EWSSC(entropy-weighting streaming subspace clustering).该算法不仅保留了传统软子空间聚类算法的特性,而且利用了模糊可扩展聚类策略,将软子空间聚类算法应用于流数据的聚类分析中.实验结果表明,EWSSC算法对于高维数据流可以得到与批处理软子空间聚类方法近似一致的实验结果. 展开更多
关键词 子空间 数据流 可扩展 模糊 文本
在线阅读 下载PDF
基于近邻传播与密度相融合的进化数据流聚类算法 被引量:34
5
作者 邢长征 刘剑 《计算机应用》 CSCD 北大核心 2015年第7期1927-1932,1949,共7页
针对目前数据流离群点不能很好地被处理、数据流聚类效率较低以及对数据流的动态变化不能实时检测等问题,提出一种基于近邻传播与密度相融合的进化数据流聚类算法(I-APDen Stream)。此算法使用传统的两阶段处理模型,即在线与离线聚类两... 针对目前数据流离群点不能很好地被处理、数据流聚类效率较低以及对数据流的动态变化不能实时检测等问题,提出一种基于近邻传播与密度相融合的进化数据流聚类算法(I-APDen Stream)。此算法使用传统的两阶段处理模型,即在线与离线聚类两部分。不仅引进了能够体现数据流动态变化的微簇衰减密度以及在线动态维护微簇的删减机制,而且在对模型采用扩展的加权近邻传播(WAP)聚类进行模型重建时,还引进了异常点检测删除机制。通过在两种类型数据集上的实验结果表明,所提算法的聚类准确率基本能保持在95%以上,其纯度对比实验等其他相关测试都有较好结果,能够高实效、高质量、高效率地处理数据流数据聚类。 展开更多
关键词 离群点 数据流 近邻传播 微簇
在线阅读 下载PDF
一种基于数据流聚类的动态目标分群框架 被引量:4
6
作者 龙真真 张策 +1 位作者 王维平 张正文 《上海交通大学学报》 EI CAS CSCD 北大核心 2010年第7期921-925,共5页
为了解决动态目标分群问题,提出了一种基于数据流聚类的动态目标分群框架.该框架分为在线和离线两部分.在线部分采用临时存储结构和金字塔时间框架保存侦察数据集的概要信息;离线部分采用CNM算法对时间框架的信息进行聚类,最终得到分群... 为了解决动态目标分群问题,提出了一种基于数据流聚类的动态目标分群框架.该框架分为在线和离线两部分.在线部分采用临时存储结构和金字塔时间框架保存侦察数据集的概要信息;离线部分采用CNM算法对时间框架的信息进行聚类,最终得到分群结果.实验表明,该框架具有灵活的精度和效率平衡性,能够较好地满足决策辅助系统处理实时信息的需要. 展开更多
关键词 动态目标分群 数据流 兵力
在线阅读 下载PDF
分布式密度和中心点数据流聚类算法的研究 被引量:7
7
作者 高宏宾 侯杰 刘劲飞 《计算机应用与软件》 CSCD 北大核心 2013年第10期181-184,共4页
分析分布式数据流聚类算法的基本框架结构,针对CluStream算法对非球形聚类效果不佳提出一种基于密度和中心点的分布式数据流聚类算法DDCS-Clustering(Distributed Density and Centers Stream Clustering)。该算法应用密度、中心点与衰... 分析分布式数据流聚类算法的基本框架结构,针对CluStream算法对非球形聚类效果不佳提出一种基于密度和中心点的分布式数据流聚类算法DDCS-Clustering(Distributed Density and Centers Stream Clustering)。该算法应用密度、中心点与衰减时间窗口,在分布式环境下对数据流进行聚类。实验结果表明,DDCS-Clustering算法具有较高的聚类质量与较低的通信代价。 展开更多
关键词 密度 中心点 分布式 数据流
在线阅读 下载PDF
基于欧拉核的数据流聚类算法 被引量:5
8
作者 朱颖雯 杨君 《计算机科学》 CSCD 北大核心 2019年第12期74-82,共9页
随着云计算、物联网的快速发展,数据采集变得更加快捷和自动化。许多新型的应用领域中,诸如实时监控系统、车辆交通监控系统、电力消耗记录以及网络流量监控等,每时每刻都在产生大量的流数据,对数据流挖掘的研究成为了热点问题。聚类分... 随着云计算、物联网的快速发展,数据采集变得更加快捷和自动化。许多新型的应用领域中,诸如实时监控系统、车辆交通监控系统、电力消耗记录以及网络流量监控等,每时每刻都在产生大量的流数据,对数据流挖掘的研究成为了热点问题。聚类分析作为数据流挖掘领域的一个重要问题,在近期被高度重视并得到广泛研究。不同于传统的静态数据聚类问题,数据流聚类受到有限内存、一遍扫描、实时响应和概念漂移等许多约束。为此,文中基于欧拉核提出了一种针对数据流的聚类算法。首先通过欧拉核显式地将数据映射到相同维度的复数特征空间,然后在特征空间中基于GNG模型进行聚类。欧拉核依赖于非线性鲁棒的cosine度量,故对野值低敏感;显式的映射避免了一般的核聚类算法需要使用核技巧而无法处理数据流的问题。实验数据表明,基于欧拉核的数据流聚类算法不仅表现出了较好的聚类性能,还识别了数据的结构信息。 展开更多
关键词 GNG 数据流 欧拉核 核方法
在线阅读 下载PDF
云环境下基于LSH的分布式数据流聚类算法 被引量:3
9
作者 曲武 王莉军 韩晓光 《计算机科学》 CSCD 北大核心 2014年第11期195-202,共8页
近年来,随着计算机技术、信息处理技术在工业生产、信息处理等领域的广泛应用,会连续不断地产生大量随时间演变的序列型数据,构成时间序列数据流,如互联网新闻语料分析、网络入侵检测、股市行情分析和传感器网络数据分析等。实时数据流... 近年来,随着计算机技术、信息处理技术在工业生产、信息处理等领域的广泛应用,会连续不断地产生大量随时间演变的序列型数据,构成时间序列数据流,如互联网新闻语料分析、网络入侵检测、股市行情分析和传感器网络数据分析等。实时数据流聚类分析是当前数据流挖掘研究的热点问题。单遍扫描算法虽然满足数据流高速、数据规模较大和实时分析的需求,但因缺乏有效的聚类算法来识别和区分模式而限制了其有效性和可扩展性。为了解决以上问题,提出云环境下基于LSH的分布式数据流聚类算法DLCStream,通过引入Map-Reduce框架和位置敏感哈希机制,DLCStream算法能够快速找到数据流中的聚类模式。通过详细的理论分析和实验验证表明,与传统的数据流聚类框架CluStream算法相比,DLCStream算法在高效并行处理、可扩展性和聚类结果质量方面更有优势。 展开更多
关键词 数据流 位置敏感哈希方法 Map-Reduce框架 DLCStream算法
在线阅读 下载PDF
基于动态网格的数据流聚类分析 被引量:6
10
作者 何勇 刘青宝 《计算机应用研究》 CSCD 北大核心 2008年第11期3281-3284,共4页
提出的增量式数据流聚类算法DGCDS结合网格和密度技术,能够得到任意形状的聚类,通过改进网格密度的计算方式,解决了现有网格算法中丢失数据空间影响信息的问题,并且实现了关键参数的自适应设置,减小了人工参数对聚类结果的影响。
关键词 动态网格 网格密度 数据流 参数
在线阅读 下载PDF
一种基于可变滑动窗口的数据流分段聚类算法 被引量:4
11
作者 栗磊 周云霞 张国强 《科学技术与工程》 北大核心 2014年第9期211-214,226,共5页
数据流的应用越来越广泛,数据流挖掘成为数据挖掘的重点研究方向之一。在分析各种数据流聚类算法的基础上,提出了一种基于可变滑动窗口的数据流分段聚类算法。算法以时间序列数据流模式表示技术为参考,以去除噪音和压缩数据为目的,实现... 数据流的应用越来越广泛,数据流挖掘成为数据挖掘的重点研究方向之一。在分析各种数据流聚类算法的基础上,提出了一种基于可变滑动窗口的数据流分段聚类算法。算法以时间序列数据流模式表示技术为参考,以去除噪音和压缩数据为目的,实现了数据流的特征提取和概要存储。实验表明,算法具有低时空复杂度、自适应等特点。 展开更多
关键词 数据流 数据流 滑动窗口
在线阅读 下载PDF
一种有效的数据流二次聚类算法 被引量:2
12
作者 胡学钢 曹永照 吴共庆 《西南交通大学学报》 EI CSCD 北大核心 2009年第4期490-494,共5页
为提高数据分布不规则和含有噪音时的数据流聚类质量,提出了一种有效的数据流二次聚类算法TCLUSA.该算法基于分区思想,采用DBSCAN方法对每块分区进行聚类,以得到的簇的均值点作为其代表点,再用k-m eans对所获得的代表点进行聚类,算法采... 为提高数据分布不规则和含有噪音时的数据流聚类质量,提出了一种有效的数据流二次聚类算法TCLUSA.该算法基于分区思想,采用DBSCAN方法对每块分区进行聚类,以得到的簇的均值点作为其代表点,再用k-m eans对所获得的代表点进行聚类,算法采用分层结构保存每次聚类获得的簇参考点,直至获得最终结果.理论分析和实验结果表明,TCLUSA算法能有效提高数据流的聚类质量. 展开更多
关键词 数据流 密度簇参考点 k-均值参考点
在线阅读 下载PDF
一种基于主成分和密度的改进型动态数据流聚类算法 被引量:1
13
作者 琚春华 梅铮 许翀寰 《情报学报》 CSSCI 北大核心 2010年第4期579-585,共7页
本文主要研究了在有限资源约束下的数据流聚类方法。针对海量,高速的数据流,现有聚类方法在有界内存和有界时间的限制下,难以快速有效地进行聚类,设计了一种基于主成分和密度的动态数据流聚类算法,PDStream算法.它采用滑动窗口管理数据... 本文主要研究了在有限资源约束下的数据流聚类方法。针对海量,高速的数据流,现有聚类方法在有界内存和有界时间的限制下,难以快速有效地进行聚类,设计了一种基于主成分和密度的动态数据流聚类算法,PDStream算法.它采用滑动窗口管理数据流;首先使用主成分模型作为前置系统,它负责对基本窗口内的源数据进行属性转换,起到了降维的作用;然后使用密度聚类模型作为后置系统进行聚类操作;最后对系统中生成的概要数据进行简化的二次聚类并更新聚类簇。通过实验表明,PDStream算法有效克服了STREAM算法使得聚类受控于历史数据的缺点,显现出处理海量数据的优越性以及聚类质量高的特点。 展开更多
关键词 数据流 主成分分析 密度 滑动窗口
在线阅读 下载PDF
基于数据流聚类的手机短信监管系统 被引量:2
14
作者 綦科 谢冬青 《计算机工程与设计》 CSCD 北大核心 2011年第9期3199-3202,共4页
为解决手机短信监管的个性化需求和源头追踪问题,提出了一种基于数据流聚类的手机短信实时监管系统的设计方案,设计了短信客户端和短信中心端互动的二层监管模型:在短信中心端应用中文分词算法对短信文本进行分词,采用数据流聚类算法和B... 为解决手机短信监管的个性化需求和源头追踪问题,提出了一种基于数据流聚类的手机短信实时监管系统的设计方案,设计了短信客户端和短信中心端互动的二层监管模型:在短信中心端应用中文分词算法对短信文本进行分词,采用数据流聚类算法和Bayes分类算法,利用短信中心可以集中监控发送者的优势,在实现短信的个性化监管和源头跟踪;在短信客户端建立个性化短信特征库,通过对接收的短信文本进行分词和Bayes分类,实现客户端个性化短信分类判别。实验结果表明,该方案可以较为精确的在短信中心端实现集中式短信监管和源头跟踪,同时在客户端可以满足短信接收者的个性化分类需求。 展开更多
关键词 手机短信 监管系统 数据流 BAYES分 源头追踪 二层监管模型
在线阅读 下载PDF
基于区间数的不确定数据流2k近邻聚类算法 被引量:8
15
作者 陆亿红 任胜亮 《浙江工业大学学报》 CAS 北大核心 2018年第3期321-326,共6页
现有数据流聚类算法多数面向的是确定性数据,可是不确定数据的数据流聚类逐步被受到关注,因为经典的不确定数据聚类算法具有概率密度函数获取困难、实用性不强以及计算复杂等缺点,提出一种基于区间数的不确定数据流聚类算法UIDStream.... 现有数据流聚类算法多数面向的是确定性数据,可是不确定数据的数据流聚类逐步被受到关注,因为经典的不确定数据聚类算法具有概率密度函数获取困难、实用性不强以及计算复杂等缺点,提出一种基于区间数的不确定数据流聚类算法UIDStream.算法用区间数来表示属性不确定性数据和基于区间数的距离计算方法,定义了不确定性数据之间的相似度,并利用传统k近邻聚类的思想,提出基于区间数的2k近邻微簇和最优2k近邻微簇的概念,通过最优2k近邻微簇的融合,实现不确定数据流的聚类.实验结果表明:改进后的算法具有良好的聚类效果,提高了不确定数据流聚类的聚类质量和速率. 展开更多
关键词 不确定数据 区间数 数据流 数据挖掘
在线阅读 下载PDF
基于数据流的聚类趋势分析算法 被引量:6
16
作者 樊仲欣 《计算机应用》 CSCD 北大核心 2020年第8期2248-2254,共7页
聚类趋势分析算法基于抽样原理导致聚类趋势指标不稳定和片面,而且不适应数据流的批量增量特性,因而需要重复进行聚类趋势指数计算。为此,基于全体数据进行整体分析,提出一种基于最小距离连通图(MDCG)的聚类趋势分析算法MDCG-CTI。首先... 聚类趋势分析算法基于抽样原理导致聚类趋势指标不稳定和片面,而且不适应数据流的批量增量特性,因而需要重复进行聚类趋势指数计算。为此,基于全体数据进行整体分析,提出一种基于最小距离连通图(MDCG)的聚类趋势分析算法MDCG-CTI。首先,利用栈的深度优先遍历法更新增量数据的最邻近路径从而降低MDCG的建立复杂度;然后,计算聚类趋势指数并确定可聚类性的判定阈值;最后,将所提算法和批量增量的具有噪声的基于密度的聚类方法(DBSCAN)相结合。在自定义数据集上的实验表明,该算法比现有算法对单簇和含大量噪点的数据的可聚类性判断更为精确;而在大数据集pendigits和avila上,所提算法比基于谱方法的聚类趋势可视化分析(SpecVAT)累计耗时降低了38%和42%,且相较SpecVAT结合批量增量DBSCAN,该算法结合批量增量DBSCAN的聚类平均准确率分别提高了6%和11%,聚类累计耗时则分别降低了7%和8%。实验结果表明该算法可以准确无参地判断聚类趋势,并明显提高增量聚类的有效性和运行效率。 展开更多
关键词 趋势 最小距离连通图 数据流 批量增量 具有噪声的基于密度的方法
在线阅读 下载PDF
基于数据流聚类的多目标跟踪算法
17
作者 马天力 王新民 +2 位作者 曹宇燕 黄誉 穆凌霞 《西北工业大学学报》 EI CAS CSCD 北大核心 2015年第3期506-511,共6页
针对传统多目标跟踪算法在航迹初始阶段易受杂波干扰,提出一种交互多模型核预估数据流聚类的多目标跟踪算法(CE_DMTT)。对数据流进行在线聚类,并运用交互式多模型预估类核位置,缩小聚类搜索范围,同时引入Renyi熵,对聚类进行自适应提取,... 针对传统多目标跟踪算法在航迹初始阶段易受杂波干扰,提出一种交互多模型核预估数据流聚类的多目标跟踪算法(CE_DMTT)。对数据流进行在线聚类,并运用交互式多模型预估类核位置,缩小聚类搜索范围,同时引入Renyi熵,对聚类进行自适应提取,获取潜在航迹。然后基于潜在航迹运用多假设跟踪算法实现实时跟踪。仿真结果表明,该算法有效减少计算复杂度,提高系统实时性。 展开更多
关键词 多目标 交互多模型 RENYI熵 数据流 多假设跟踪
在线阅读 下载PDF
基于特征选择的数据流聚类
18
作者 龙鹏飞 唐军 王琳 《计算机工程与设计》 CSCD 北大核心 2010年第19期4235-4237,4241,共4页
在数据流聚类时,冗余特征会影响数据的聚类质量,移除冗余特征以提高聚类质量就显得尤为重要。为解决此问题,提出一种基于特征选择的数据流聚类算法(DSCFC)。该算法应用了特征排序、特征等级评定、探测冗余不重要的特征、移除冗余特征算... 在数据流聚类时,冗余特征会影响数据的聚类质量,移除冗余特征以提高聚类质量就显得尤为重要。为解决此问题,提出一种基于特征选择的数据流聚类算法(DSCFC)。该算法应用了特征排序、特征等级评定、探测冗余不重要的特征、移除冗余特征算法等。实验结果表明,DSCFC算法能探测出数据流中隐含的冗余特征并移除冗余特征,在对有冗余特征的数据流聚类时,比CluSteam算法更有效,聚类质量更好。 展开更多
关键词 数据流 特征选择 冗余特征 代价矩阵 特征移除
在线阅读 下载PDF
基于动态滑动窗口的改进数据流聚类算法
19
作者 许颖梅 《郑州轻工业学院学报(自然科学版)》 CAS 2014年第1期98-102,共5页
提出一种采用滑动窗口处理数据的优化算法DCluStream.该方法基于CluStream算法双层框架思想,在聚类特征中引入数据流入和流出滑动窗口的实际时间,动态调整窗口大小以适应有限内存;对历史数据通过时间衰减机制来降低它对新数据对象的影响... 提出一种采用滑动窗口处理数据的优化算法DCluStream.该方法基于CluStream算法双层框架思想,在聚类特征中引入数据流入和流出滑动窗口的实际时间,动态调整窗口大小以适应有限内存;对历史数据通过时间衰减机制来降低它对新数据对象的影响,使聚类效果更好.实验结果表明,与CluStream相比,本算法处理数据的效率更高且相对节约内存. 展开更多
关键词 滑动窗口 数据流算法 时间衰减机制
在线阅读 下载PDF
基于随机投影的高维数据流聚类 被引量:11
20
作者 朱颖雯 陈松灿 《计算机研究与发展》 EI CSCD 北大核心 2020年第8期1683-1696,共14页
高维数据流在许多现实应用中广泛存在,例如网络监控.不同于传统的静态数据聚类问题,数据流聚类面临有限内存、单遍扫描、实时响应和概念漂移等问题.然而现有许多数据流聚类算法在处理高维数据时,常常因产生维数灾难而导致高计算复杂度... 高维数据流在许多现实应用中广泛存在,例如网络监控.不同于传统的静态数据聚类问题,数据流聚类面临有限内存、单遍扫描、实时响应和概念漂移等问题.然而现有许多数据流聚类算法在处理高维数据时,常常因产生维数灾难而导致高计算复杂度和较差的性能.为了解决此问题,基于随机投影和自适应谐振理论(adaptive resonance theory, ART)提出了一种针对高维数据流的高效聚类算法RPFART.该算法具有线性计算复杂度,仅包含1个超参数,并对参数设置鲁棒.详细分析了随机投影对ART的主要影响,尽管该算法仅简单地将随机投影与ART方法进行了结合,但在多个数据集上的实验结果表明:即使将原始尺寸压缩到10%,该方法仍可以达到与RPGStream算法相当的性能.对于ACT1数据集,其维数从67 500减少到6 750. 展开更多
关键词 高维数据 数据流 随机投影 自适应谐振理论
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部