期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于图过滤的快速密度聚类双层网络推荐算法 被引量:11
1
作者 陈晋音 吴洋洋 林翔 《控制理论与应用》 EI CAS CSCD 北大核心 2019年第4期542-552,共11页
信息过载问题使得推荐系统迅速发展并广泛应用,同时也出现不法商家将虚假消费记录定量地输入到系统数据库从而改变推荐系统的推荐结果以获利.因此,本文围绕3个问题展开,即:为了提高推荐系统对虚假评论的鉴别能力,首先需要准确标注虚假... 信息过载问题使得推荐系统迅速发展并广泛应用,同时也出现不法商家将虚假消费记录定量地输入到系统数据库从而改变推荐系统的推荐结果以获利.因此,本文围绕3个问题展开,即:为了提高推荐系统对虚假评论的鉴别能力,首先需要准确标注虚假评论的类标,如何能获取大量准确标定的虚假评论信息;如何有效过滤虚假评论从而提高推荐的可靠性;如何实现一种高效可靠的推荐系统.针对虚假评论信息难以准确标定,本文提出了一种基于文本生成式对抗网络的自动点评技术,依据历史评论文本自动生成虚假评论文本,并依据情感分析确定生成文本的对应评分;为了提高推荐系统对包含虚假信息数据的推荐效果,本文提出了一种基于图过滤的快速密度聚类双层网络推荐算法.该算法首先提出了一种能快速确定节点执行度阈值的基于图的过滤器,有效过滤数据内虚假信息,并设计了一种快速密度聚类双层网络推荐算法,提高推荐效果.将所提出的推荐算法应用到Yelp数据集上展开试验,验证本文提出的推荐方法的有效性. 展开更多
关键词 对抗生成式网络 自动点评 基于图的过滤器 聚类推荐算法
在线阅读 下载PDF
基于页面聚类的推荐算法的改进
2
作者 张海玉 刘志都 +1 位作者 杨彩 贾松浩 《计算机应用与软件》 CSCD 北大核心 2008年第9期15-16,48,共3页
基于页面聚类的推荐算法常被应用在个性化推荐系统中,但是很少考虑页面访问的顺序性。针对这种弊端,提出了一种新的路径相似度系数,同时在推荐算法中运用了关联规则,提高了推荐结果的准确性。
关键词 页面聚类推荐算法 相似度 WEB使用挖掘
在线阅读 下载PDF
Applying memetic algorithm-based clustering to recommender system with high sparsity problem 被引量:2
3
作者 MARUNG Ukrit THEERA-UMPON Nipon AUEPHANWIRIYAKUL Sansanee 《Journal of Central South University》 SCIE EI CAS 2014年第9期3541-3550,共10页
A new recommendation method was presented based on memetic algorithm-based clustering. The proposed method was tested on four highly sparse real-world datasets. Its recommendation performance is evaluated and compared... A new recommendation method was presented based on memetic algorithm-based clustering. The proposed method was tested on four highly sparse real-world datasets. Its recommendation performance is evaluated and compared with that of the frequency-based, user-based, item-based, k-means clustering-based, and genetic algorithm-based methods in terms of precision, recall, and F1 score. The results show that the proposed method yields better performance under the new user cold-start problem when each of new active users selects only one or two items into the basket. The average F1 scores on all four datasets are improved by 225.0%, 61.6%, 54.6%, 49.3%, 28.8%, and 6.3% over the frequency-based, user-based, item-based, k-means clustering-based, and two genetic algorithm-based methods, respectively. 展开更多
关键词 memetic algorithm recommender system sparsity problem cold-start problem clustering method
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部