期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
基于MFCC和运动强度聚类初始化的多说话人识别 被引量:10
1
作者 曹洁 余丽珍 《计算机应用研究》 CSCD 北大核心 2012年第9期3295-3298,共4页
针对常用基于音频特征的多说话人聚类初始化方法精度不高这一问题,提出了一种基于视频信号的新方法。该方法通过运用每一时间帧视频信号的运动强度特征对聚类初始化阶段的初始话者类进行选择,有效提升了说话人初始类纯度。最后将该方法... 针对常用基于音频特征的多说话人聚类初始化方法精度不高这一问题,提出了一种基于视频信号的新方法。该方法通过运用每一时间帧视频信号的运动强度特征对聚类初始化阶段的初始话者类进行选择,有效提升了说话人初始类纯度。最后将该方法应用到高斯混合模型(GMM)多说话人识别系统。实验结果表明,在整个会议集上该方法相比其他方法有了很大改善,较之线性初始化系统的错误识别率平均降低了19.436%,较之改进的线性初始化系统的错误识别率平均降低了16.618%。 展开更多
关键词 多说话人识别 聚类初始化 运动强度特征 运动强度初始化
在线阅读 下载PDF
改进的说话人聚类初始化和GMM的多说话人识别 被引量:6
2
作者 曹洁 余丽珍 《计算机应用研究》 CSCD 北大核心 2012年第2期590-593,共4页
针对多说话人聚类线性初始化方法精度较差的问题,提出了一种改进的聚类初始化方法。该方法引入BIC对由线性初始化产生的初始类进行检测分割,有效提升了说话人初始类纯度。最后将该方法应用到高斯混合模型(GMM)多说话人识别系统。实验结... 针对多说话人聚类线性初始化方法精度较差的问题,提出了一种改进的聚类初始化方法。该方法引入BIC对由线性初始化产生的初始类进行检测分割,有效提升了说话人初始类纯度。最后将该方法应用到高斯混合模型(GMM)多说话人识别系统。实验结果表明,所提方法使说话人平均类纯度(ACP)提高了48.51%,系统的错误识别率平均降低12.09%。 展开更多
关键词 多说话人识别 改进的聚类初始化 高斯混合模型 平均纯度
在线阅读 下载PDF
采用离群点检测技术的混合型数据聚类初始化方法 被引量:10
3
作者 杨志勇 江峰 +1 位作者 于旭 杜军威 《智能系统学报》 CSCD 北大核心 2023年第1期56-65,共10页
近年来,混合型数据的聚类问题受到广泛关注。作为处理混合型数据的一种有效方法,K-prototype聚类算法在初始化聚类中心时通常采用随机选取的策略,然而这种策略在很多实际应用中难以保证聚类结果的质量。针对上述问题,采用基于离群点检... 近年来,混合型数据的聚类问题受到广泛关注。作为处理混合型数据的一种有效方法,K-prototype聚类算法在初始化聚类中心时通常采用随机选取的策略,然而这种策略在很多实际应用中难以保证聚类结果的质量。针对上述问题,采用基于离群点检测的策略来为K-prototype算法选择初始中心,并提出一种新的混合型数据聚类初始化算法(initialization of K-prototype clustering based on outlier detection and density,IKP-ODD)。给定一个候选对象,IKP-ODD通过计算其距离离群因子、加权密度以及与已有初始中心之间的加权距离来判断候选对象是否是一个初始中心。IKP-ODD通过采用距离离群因子和加权密度,防止选择离群点作为初始中心。在计算对象的加权密度以及对象之间的加权距离时,采用邻域粗糙集中的粒度邻域熵来计算每一个属性的重要性,并根据属性重要性的大小为不同属性赋予不同的权重,有效地反映不同属性之间的差异性。在多个UCI数据集上的实验表明,相对于现有的初始化方法,IKP-ODD能够更好地解决K-prototype聚类的初始化问题。 展开更多
关键词 聚类初始化 混合型数据 离群点检测 邻域粗糙集 粒度邻域熵 距离离群因子 加权密度 加权距离
在线阅读 下载PDF
聚类中心初始化的新方法 被引量:24
4
作者 李春生 王耀南 《控制理论与应用》 EI CAS CSCD 北大核心 2010年第10期1435-1440,共6页
k-均值聚类算法易受初始聚类中心的影响而陷入局部最优解.现有聚类中心初始化方法尚未得到广泛认可.本文依据每个类内至少有一个数据稠密区,且处于不同类的数据稠密区比处于同一类的数据稠密区相距更远的假设,在数据集合上构造一棵最小... k-均值聚类算法易受初始聚类中心的影响而陷入局部最优解.现有聚类中心初始化方法尚未得到广泛认可.本文依据每个类内至少有一个数据稠密区,且处于不同类的数据稠密区比处于同一类的数据稠密区相距更远的假设,在数据集合上构造一棵最小支撑树,应用根树原理在其上搜索数据稠密区并估计其密度,从中选出密度大且足够分离的数据稠密区,以其内的点作为初始聚类中心,得到了一个聚类中心初始化的新方法.将此方法与现有的方法进行比较,仿真实验表明,本文方法性能更优越. 展开更多
关键词 最小支撑树 中心初始化 k—means算法
在线阅读 下载PDF
基于划分采样的初始聚类中心算法
5
作者 李玮 薛惠锋 詹海亮 《太原理工大学学报》 CAS 北大核心 2011年第4期334-337,共4页
针对大数据集的初始聚类中心选取问题,在基于密度的划分算法和适用于大规模数据集限定初值的采样算法基础上,提出了一种用于初始聚类中心的划分采样算法。对聚类子空间在每一维上进行均匀划分形成不同的数据区域,根据数据区域的数据点... 针对大数据集的初始聚类中心选取问题,在基于密度的划分算法和适用于大规模数据集限定初值的采样算法基础上,提出了一种用于初始聚类中心的划分采样算法。对聚类子空间在每一维上进行均匀划分形成不同的数据区域,根据数据区域的数据点数的多少进行采样来提高采样的准确性。利用采样思想缩小了数据集的规模,保证了算法在时间上的优势。通过不同规模、不同形状的数据集对算法进行验证,实验结果表明,与其它初始聚类中心算法相比,该算法在准确率和时间上都具有一定的优势。 展开更多
关键词 中心初始化 密度估计法 限定初值算法 K—means算法
在线阅读 下载PDF
基于最近邻模糊聚类的T-S模糊辨识方法 被引量:4
6
作者 王娜 胡超芳 《控制工程》 CSCD 北大核心 2019年第6期1068-1073,共6页
为提高T-S模糊模型的辨识精度和计算效率,并针对传统聚类算法存在的聚类中心选取问题,提出一种基于最近邻模糊聚类的T-S模糊辨识方法。首先,利用所提的最近邻聚类法降低了传统计算中人为预设聚类初始参数的主观性,并提高了聚类效率,其... 为提高T-S模糊模型的辨识精度和计算效率,并针对传统聚类算法存在的聚类中心选取问题,提出一种基于最近邻模糊聚类的T-S模糊辨识方法。首先,利用所提的最近邻聚类法降低了传统计算中人为预设聚类初始参数的主观性,并提高了聚类效率,其结果作为模糊c均值算法的初始参数,来实现对模糊规则中前提参数的准确辨识,最后结合稳态卡尔曼滤波算法快速估计规则的后件参数。所提方法的有效性通过典型化工过程pH中和过程的建模得以验证。 展开更多
关键词 最近邻 聚类初始化 模糊 T-S模糊辨识
在线阅读 下载PDF
一种基于Hadoop云计算平台的聚类算法优化的研究 被引量:29
7
作者 张石磊 武装 《计算机科学》 CSCD 北大核心 2012年第S2期115-118,共4页
随着信息技术的飞速发展,需要处理的数据量急剧增长,聚类算法的研究面临着海量数据分析和处理的挑战。对K-means聚类算法的优化进行了深入的研究,提出了首先选定初始聚类中心的并行K-means聚类算法。对不同大小的数据集进行测试实验,证... 随着信息技术的飞速发展,需要处理的数据量急剧增长,聚类算法的研究面临着海量数据分析和处理的挑战。对K-means聚类算法的优化进行了深入的研究,提出了首先选定初始聚类中心的并行K-means聚类算法。对不同大小的数据集进行测试实验,证明该优化算法具有更好的时间性、正确性和稳定性,适合于海量数据的分析和处理。 展开更多
关键词 云计算 HADOOP平台 并行K-means MapReudce 初始化中心
在线阅读 下载PDF
基于知识量加权的直觉模糊均值聚类方法 被引量:1
8
作者 郭凯红 吴峥 李冬 《计算机应用研究》 CSCD 北大核心 2023年第4期1088-1094,共7页
针对聚类算法中特征数据对聚类中心贡献的差异性及算法对初始聚类中心的敏感性等问题,提出一种基于知识量加权的直觉模糊均值聚类方法。首先将原始数据集直觉模糊化并改进最新的直觉模糊知识测度计算知识量,据此实现数据集特征加权,再... 针对聚类算法中特征数据对聚类中心贡献的差异性及算法对初始聚类中心的敏感性等问题,提出一种基于知识量加权的直觉模糊均值聚类方法。首先将原始数据集直觉模糊化并改进最新的直觉模糊知识测度计算知识量,据此实现数据集特征加权,再利用核空间密度与核距离初始化聚类中心,以提高高维特征数据集的计算精度与聚类效率,最后基于类间样本距离与最小知识量原理建立聚类优化模型,得到最优迭代算法。基于UCI人工数据集的实验结果表明,所提方法较大程度地提高了聚类的准确性与迭代效率,分类正确率及执行效率分别平均提高了10.63%和31.75%,且具有良好的普适性和稳定性。该方法首次将知识测度新理论引入模糊聚类并取得优良效果,为该理论在其他相关领域的潜在应用开创了新例。 展开更多
关键词 知识测度 直觉模糊均值算法 数据加权 中心初始化
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部