期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
一种基于代表点的快速聚类算法 被引量:4
1
作者 李晓翠 孟凡荣 周勇 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第4期504-512,共9页
目前经典的聚类算法在内存空间有限的情况下,聚类受到时间、空间等各方面的限制,提出一种基于代表点的快速聚类算法FCBRP(fast clustering based representative points).首先,判定数据集中所有节点的属性,当节点的D临域内存在大于等于... 目前经典的聚类算法在内存空间有限的情况下,聚类受到时间、空间等各方面的限制,提出一种基于代表点的快速聚类算法FCBRP(fast clustering based representative points).首先,判定数据集中所有节点的属性,当节点的D临域内存在大于等于K个邻居节点时,将其定义为代表点,代表点D临域内所有邻居节点与该代表点之间的平均欧氏距离即为该代表点的相关密度RD,所有的代表点组成代表点集合;将所有在代表点的D临域内的节点定义为能被代表的节点,并将其进行存储;既不是代表点、又不能被其它节点所代表的节点,将其定义为噪音节点;其次,对代表点集合进行聚类,对于给定的密度标准α,如果两个代表点满足密度相关,即两个代表点的相关密度分别乘以密度标准α后同时大于等于两者之间的欧氏距离,则将其划分到同一类簇中,通过对代表点的聚类,达到对数据的区域划分,得到所有类簇的基本形状;最后,对于被其它代表点所代表的节点,通过检测代表它们的代表点所属的类簇,判定被代表的节点所属的类簇,对于少数位于不同类簇中的代表点的D临域内的节点,将其划分到相对距离较近的代表点所属的类簇中.实验证明,FCBRP算法对空间需求较小,效率快,精度高,鲁棒性更佳. 展开更多
关键词 代表选取 代表 FCBRP算法
在线阅读 下载PDF
基于采样的大规模图聚类分析算法 被引量:4
2
作者 张建朋 陈鸿昶 +2 位作者 王凯 祝凯捷 王亚文 《电子学报》 EI CAS CSCD 北大核心 2019年第8期1731-1737,共7页
针对当前聚类方法(例如经典的GN算法)计算复杂度过高、难以适用于大规模图的聚类问题,本文首先对大规模图的采样算法展开研究,提出了能够有效保持原始图聚类结构的图采样算法(Clustering-structure Representative Sampling,CRS),它能... 针对当前聚类方法(例如经典的GN算法)计算复杂度过高、难以适用于大规模图的聚类问题,本文首先对大规模图的采样算法展开研究,提出了能够有效保持原始图聚类结构的图采样算法(Clustering-structure Representative Sampling,CRS),它能在采样图中产生高质量的聚类代表点,并根据相应的扩张准则进行采样扩张.此采样算法能够很好地保持原始图的内在聚类结构.其次,提出快速的整体样本聚类推断(Population Clustering Inference,PCI)算法,它利用采样子图的聚类标签对整体图的聚类结构进行推断.实验结果表明本文算法对大规模图数据具有较高的聚类质量和处理效率,能够很好地完成大规模图的聚类任务. 展开更多
关键词 大规模图 图采样 整体推断 聚类代表点 扩张准则
在线阅读 下载PDF
数据挖掘中聚类算法比较研究 被引量:35
3
作者 张红云 刘向东 +2 位作者 段晓东 苗夺谦 马垣 《计算机应用与软件》 CSCD 北大核心 2003年第2期5-6,77,共3页
聚类算法是数据挖掘的核心技术,本文综合提出了评价聚类算法好坏的5个标准,基于这5个标准,对数据挖掘中常用聚类算法作了比较分析,以便于人们更容易、更快捷地找到一种适用于特定问题的聚类算法。
关键词 数据挖掘 算法 平衡迭代削减算法 代表算法 数据库
在线阅读 下载PDF
基于CURE的用户聚类算法研究 被引量:8
4
作者 赵妍 赵学民 《计算机工程与应用》 CSCD 2012年第11期97-101,共5页
通过对Web网站的日志进行聚类分析,目的是获取用户兴趣访问模式,进而为不同用户群体提供定制的个性化服务。针对原始CURE算法在代表点选择的随机性、不能充分体现用户兴趣偏好方面存在的问题,提出了改进的用户聚类算法,根据用户兴趣的... 通过对Web网站的日志进行聚类分析,目的是获取用户兴趣访问模式,进而为不同用户群体提供定制的个性化服务。针对原始CURE算法在代表点选择的随机性、不能充分体现用户兴趣偏好方面存在的问题,提出了改进的用户聚类算法,根据用户兴趣的显著特征提取元素的主要属性进行预聚类,为小类合并提供合理的初始类集,实验结果证明了该方法有较好的聚类结果。 展开更多
关键词 利用代表(CURE)算法 分析 用户兴趣 个性化
在线阅读 下载PDF
数据挖掘中聚类算法比较及在武警网络中的应用研究
5
作者 田杰 周晓娟 吕建新 《现代电子技术》 2008年第8期115-117,共3页
聚类算法是数据挖掘的核心技术,根据评价聚类算法优劣的几个标准,对数据挖掘中常用聚类算法做了比较分析,根据各自特点,加以改进,并应用于武警部队数据挖掘项目中。通过运用改进型K-means算法,取得了较好的挖掘结果,为进一步信息的智能... 聚类算法是数据挖掘的核心技术,根据评价聚类算法优劣的几个标准,对数据挖掘中常用聚类算法做了比较分析,根据各自特点,加以改进,并应用于武警部队数据挖掘项目中。通过运用改进型K-means算法,取得了较好的挖掘结果,为进一步信息的智能化检索、信息的过滤、分拣提供依据。 展开更多
关键词 数据挖掘 代表算法 基于密度的算法 K-MEANS算法 指挥自动化
在线阅读 下载PDF
Binary-Positive下的并行化CURE算法 被引量:3
6
作者 王民 尹超 +2 位作者 王稚慧 要趁红 高婧 《计算机工程与应用》 CSCD 2014年第11期58-61,共4页
当CURE算法在处理不均匀的海量数据时,针对随机抽样不具有代表性的问题,提出了一种健壮的并行化改进算法。该算法使用Binary-Positive算法得到原始数据的有效属性,并利用MapReduce并行框架对有效数据进行层次聚类,从而实现了正确率与效... 当CURE算法在处理不均匀的海量数据时,针对随机抽样不具有代表性的问题,提出了一种健壮的并行化改进算法。该算法使用Binary-Positive算法得到原始数据的有效属性,并利用MapReduce并行框架对有效数据进行层次聚类,从而实现了正确率与效率的一种权衡。实验分析表明,改进后的CURE算法具有更高的执行效率,且聚类效果良好。 展开更多
关键词 利用代表(CURE) Binary—Positive MAPREDUCE 并行
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部