This work proposed a strategy to improve the caking index of polyethylene terephthalate(PET)waste,in which low-temperature pyrolysis treatment(LTPT)was used to depolymerize PET waste.The mechanism of G modification wa...This work proposed a strategy to improve the caking index of polyethylene terephthalate(PET)waste,in which low-temperature pyrolysis treatment(LTPT)was used to depolymerize PET waste.The mechanism of G modification was revealed combining thermogravimetric(TG)analysis,Fourier transform infrared spectroscopy,pyrolysis-gas chromatography with mass spectrometric detection,and solid-state 13C nuclear magnetic resonance spectroscopy.Furthermore,crucible coking experiments were also conducted using industrial coal mixture and treated PET with the optimum G(PET300)or raw PET to evaluate the applicability of PET waste in coal-blending coking.According to characterization results of coke reactivity(CR),coke strength after reaction(CSR)indices,TG-related curves,pore volumes,and Raman spectra of the resultant cokes,LTPT could greatly increase the G of PET,and the optimum temperature was 300℃.Specifically,compared with the coke obtained from the blend with PET,the CR of the coke produced from the blend with PET300 decreased by 4.9%,whereas the CSR of the increased by 7.4%,suggesting that LTPT could increase the proportion of PET used for coal-blending coking.The improvement in G is attributed to the changes in C-O/C=O ratio,aliphatic H and aromaticity caused by LTPT.展开更多
With the aim to effectively depolymerize polyethylene terephthalate(PET)under mild reaction conditions,PET methanolysis and dimethyl terephthalate(DMT)hydrolysis are integrated in a catalyst system.Firstly,methanolysi...With the aim to effectively depolymerize polyethylene terephthalate(PET)under mild reaction conditions,PET methanolysis and dimethyl terephthalate(DMT)hydrolysis are integrated in a catalyst system.Firstly,methanolysis of PET to DMT is achieved over Cu-Mg-Al oxide catalyst.Next,terephthalic acid(TPA)is prepared by DMT hydrolysis.It is found that hydrolysis of DMT to TPA can be promoted by introducing trace amount of water in this catalyst system.CuO-MgO-4.5Al_2O_(3)catalyst demonstrates the excellent catalytic performance for the depolymerization of PET with high conversion rate and TPA yield(100%and 99.5%,respectively)after reaction at 160℃for 6 h,which provides a new idea for the depolymerization of PET.展开更多
基金supported by the National Natural Science Foundation of China(22308006,22278001)the Natural Science Foundation of Anhui Provincial Education Department(KJ2021A0407).
文摘This work proposed a strategy to improve the caking index of polyethylene terephthalate(PET)waste,in which low-temperature pyrolysis treatment(LTPT)was used to depolymerize PET waste.The mechanism of G modification was revealed combining thermogravimetric(TG)analysis,Fourier transform infrared spectroscopy,pyrolysis-gas chromatography with mass spectrometric detection,and solid-state 13C nuclear magnetic resonance spectroscopy.Furthermore,crucible coking experiments were also conducted using industrial coal mixture and treated PET with the optimum G(PET300)or raw PET to evaluate the applicability of PET waste in coal-blending coking.According to characterization results of coke reactivity(CR),coke strength after reaction(CSR)indices,TG-related curves,pore volumes,and Raman spectra of the resultant cokes,LTPT could greatly increase the G of PET,and the optimum temperature was 300℃.Specifically,compared with the coke obtained from the blend with PET,the CR of the coke produced from the blend with PET300 decreased by 4.9%,whereas the CSR of the increased by 7.4%,suggesting that LTPT could increase the proportion of PET used for coal-blending coking.The improvement in G is attributed to the changes in C-O/C=O ratio,aliphatic H and aromaticity caused by LTPT.
文摘With the aim to effectively depolymerize polyethylene terephthalate(PET)under mild reaction conditions,PET methanolysis and dimethyl terephthalate(DMT)hydrolysis are integrated in a catalyst system.Firstly,methanolysis of PET to DMT is achieved over Cu-Mg-Al oxide catalyst.Next,terephthalic acid(TPA)is prepared by DMT hydrolysis.It is found that hydrolysis of DMT to TPA can be promoted by introducing trace amount of water in this catalyst system.CuO-MgO-4.5Al_2O_(3)catalyst demonstrates the excellent catalytic performance for the depolymerization of PET with high conversion rate and TPA yield(100%and 99.5%,respectively)after reaction at 160℃for 6 h,which provides a new idea for the depolymerization of PET.