This article studies the influence of polymers on drag reduction and heat transfer enhancement of a nanofluid past a uniformly heated permeable vertically stretching surface. Our prime focus is on analyzing the possib...This article studies the influence of polymers on drag reduction and heat transfer enhancement of a nanofluid past a uniformly heated permeable vertically stretching surface. Our prime focus is on analyzing the possible effects of polymer inclusion in the nanofluid on drag coefficient, Nusselt number and Sherwood number. Dispersion model is considered to study the behavior of fluid flow and heat transfer in the presence of nanoparticles. Molecular approach is opted to explore polymer addition in the base fluid. An extra stress arises in the momentum equation as an outcome of polymer stretching. The governing boundary layer equations are solved numerically. Dependence of physical quantities of engineering interest on different flow parameters is studied. Reduction in drag coefficient, Nusselt number and Sherwood number is noticed because of polymer additives.展开更多
Carbon nanotube(CNT)/polymer nanocomposites have vast application in industry because of their light mass and high strength. In this work, a cylindrical tube which is made up of functionally graded(FG) PmP V/CNT nanoc...Carbon nanotube(CNT)/polymer nanocomposites have vast application in industry because of their light mass and high strength. In this work, a cylindrical tube which is made up of functionally graded(FG) PmP V/CNT nanocomposite, is optimally designed for the purpose of torque transmission. The main confining parameters of a rotating shaft in torque transmission process are mass of the shaft, critical speed of rotation and critical buckling torque. It is required to solve a multi-objective optimization problem(MOP) to consider these three targets simultaneously in the process of design. The three-objective optimization problem for this case is defined and solved using a hybrid method of FEM and modified non-dominated sorting genetic algorithm(NSGA-II), by coupling two softwares, MATLAB and ABAQUS. Optimization process provides a set of non-dominated optimal design vectors. Then, two methods, nearest to ideal point(NIP) and technique for ordering preferences by similarity to ideal solution(TOPSIS), are employed to choose trade-off optimum design vectors. Optimum parameters that are obtained from this work are compared with the results of previous studies for similar cylindrical tubes made from composite or a hybrid of aluminum and composite that more than 20% improvement is observed in all of the objective functions.展开更多
A novel molecularly imprinted polymer (MIP) based on upconversion nanoparticles (UCNPs) was successfully synthesized for determination of Ochratoxin A (OTA). The MIP was developed on the silica-coated UCNPs using N-(1...A novel molecularly imprinted polymer (MIP) based on upconversion nanoparticles (UCNPs) was successfully synthesized for determination of Ochratoxin A (OTA). The MIP was developed on the silica-coated UCNPs using N-(1-hydroxy-2-naphthoyl amido)-(L)-phenylalanine (HNA-Phe) as the alternative template. The final composite combined the advantages of the high selectivity of MIP with the high fluorescence intensity of UCNPs which was selective and sensitive to OTA. Under the optimal condition, the fluorescence intensity of UCNPs@SiO2@MIP decreases linearly when the concentration of OTA increases from 0.05 to 1.0 mg/L. The detection limit of OTA with the method was 0.031 mg/L. At three spiked concentration levels (50, 100 and 200 μg/kg), the recovery ranges of OTA in corn, rice and feed are 88.0%–91.6%, 80.2%–91.6% and 89.2%–90.4%, respectively.展开更多
Conductive polymer composites(CPCs)are widely used in the flexible strain sensors due to their simple fabrication process and controllable sensing properties.However,temperature has a significance impact on the strain...Conductive polymer composites(CPCs)are widely used in the flexible strain sensors due to their simple fabrication process and controllable sensing properties.However,temperature has a significance impact on the strain sensing performance of CPCs.In this paper,the strain sensing characteristics of MWCNTs/PDMS composites under temperature loading were systematically studied.It was found that the sensitivity decreased with the increase of temperature and the phenomenon of shoulder peak also decreased.Based on the theory of polymer mechanics,it was found that temperature could affect the conductive network by changing the motion degree of PDMS molecular chain,resulting in the change of sensing characteristics.Finally,a mathematical model of the resistance against loading condition(strain and temperature),associated with the force−electrical equivalent relationship of composites,was established to discuss the experimental results as well as the sensing mechanism.The results presented in this paper was believed helpful for the further application of strain sensors in different temperature conditions.展开更多
基金Project(IFP-A-2022-2-5-24) supported by Institutional Fund Projects,University of Hafr Al Batin,Saudi Arabia。
文摘This article studies the influence of polymers on drag reduction and heat transfer enhancement of a nanofluid past a uniformly heated permeable vertically stretching surface. Our prime focus is on analyzing the possible effects of polymer inclusion in the nanofluid on drag coefficient, Nusselt number and Sherwood number. Dispersion model is considered to study the behavior of fluid flow and heat transfer in the presence of nanoparticles. Molecular approach is opted to explore polymer addition in the base fluid. An extra stress arises in the momentum equation as an outcome of polymer stretching. The governing boundary layer equations are solved numerically. Dependence of physical quantities of engineering interest on different flow parameters is studied. Reduction in drag coefficient, Nusselt number and Sherwood number is noticed because of polymer additives.
文摘Carbon nanotube(CNT)/polymer nanocomposites have vast application in industry because of their light mass and high strength. In this work, a cylindrical tube which is made up of functionally graded(FG) PmP V/CNT nanocomposite, is optimally designed for the purpose of torque transmission. The main confining parameters of a rotating shaft in torque transmission process are mass of the shaft, critical speed of rotation and critical buckling torque. It is required to solve a multi-objective optimization problem(MOP) to consider these three targets simultaneously in the process of design. The three-objective optimization problem for this case is defined and solved using a hybrid method of FEM and modified non-dominated sorting genetic algorithm(NSGA-II), by coupling two softwares, MATLAB and ABAQUS. Optimization process provides a set of non-dominated optimal design vectors. Then, two methods, nearest to ideal point(NIP) and technique for ordering preferences by similarity to ideal solution(TOPSIS), are employed to choose trade-off optimum design vectors. Optimum parameters that are obtained from this work are compared with the results of previous studies for similar cylindrical tubes made from composite or a hybrid of aluminum and composite that more than 20% improvement is observed in all of the objective functions.
基金Project(17ZYPTJC00050)supported by Science and Technology Committee of Tianjin,ChinaProject(2017YFC1600803)supported by the Ministry of Science and Technology of China
文摘A novel molecularly imprinted polymer (MIP) based on upconversion nanoparticles (UCNPs) was successfully synthesized for determination of Ochratoxin A (OTA). The MIP was developed on the silica-coated UCNPs using N-(1-hydroxy-2-naphthoyl amido)-(L)-phenylalanine (HNA-Phe) as the alternative template. The final composite combined the advantages of the high selectivity of MIP with the high fluorescence intensity of UCNPs which was selective and sensitive to OTA. Under the optimal condition, the fluorescence intensity of UCNPs@SiO2@MIP decreases linearly when the concentration of OTA increases from 0.05 to 1.0 mg/L. The detection limit of OTA with the method was 0.031 mg/L. At three spiked concentration levels (50, 100 and 200 μg/kg), the recovery ranges of OTA in corn, rice and feed are 88.0%–91.6%, 80.2%–91.6% and 89.2%–90.4%, respectively.
基金Project(ZZYJKT2019-05)supported by State Key Laboratory of High Performance Complex Manufacturing,ChinaProject(51605497)supported by the National Natural Science Foundation of ChinaProject(2020CX05)supported by Innovation-Driven Project of Central South University,China。
文摘Conductive polymer composites(CPCs)are widely used in the flexible strain sensors due to their simple fabrication process and controllable sensing properties.However,temperature has a significance impact on the strain sensing performance of CPCs.In this paper,the strain sensing characteristics of MWCNTs/PDMS composites under temperature loading were systematically studied.It was found that the sensitivity decreased with the increase of temperature and the phenomenon of shoulder peak also decreased.Based on the theory of polymer mechanics,it was found that temperature could affect the conductive network by changing the motion degree of PDMS molecular chain,resulting in the change of sensing characteristics.Finally,a mathematical model of the resistance against loading condition(strain and temperature),associated with the force−electrical equivalent relationship of composites,was established to discuss the experimental results as well as the sensing mechanism.The results presented in this paper was believed helpful for the further application of strain sensors in different temperature conditions.