为代替纤维素纸(C-P)基电解质膜用于铝空气电池,利用静电纺丝技术制备了聚吲哚/聚丙烯腈(PIN/PAN)聚合物基电解质膜。采用SEM和FTIR对PIN/PAN纤维表面形貌及化学组成进行了分析。通过电化学工作站和电池测试系统分析了PIN含量对PIN/PAN...为代替纤维素纸(C-P)基电解质膜用于铝空气电池,利用静电纺丝技术制备了聚吲哚/聚丙烯腈(PIN/PAN)聚合物基电解质膜。采用SEM和FTIR对PIN/PAN纤维表面形貌及化学组成进行了分析。通过电化学工作站和电池测试系统分析了PIN含量对PIN/PAN聚合物基电解质膜离子电导率、离子扩散系数及固态铝空气电池放电性能的影响。结果表明,PIN/PAN纤维的孔隙率、吸液率、断裂伸长率与加入的PIN含量有关,同时对碱性溶液具有良好的吸附能力及机械性能,其中,PIN含量(以PAN溶液的质量为基准,其中,溶剂为N,N-二甲基甲酰胺,下同)为4%的PIN/PAN纤维(记为4%PIN/PAN纤维)的吸液率达496%、孔隙率为87.1%、断裂伸长率为8.7%,分别是C-P的3.2、1.1、3.8倍。基于PIN/PAN纤维制备的PIN/PAN聚合物基电解质膜可有效提升固态铝空气电池性能。其中,4%PIN/PAN聚合物基电解质膜在3、5、7 m A/cm^(2)电流密度下,放电时长比C-P铝空气电池分别提升约18%、32%、38%,离子电导率为6.7×10^(–4)S/cm,离子扩散系数为2.69×10^(–8)cm^(2)/S。展开更多
A polymer electrolyte based on poly(vinylidene) fluoride-hexafluoropropylene was prepared by evaporating the solvent of dimethyl formamide, and non-woven fabric was used to reinforce the mechanical strength of polymer...A polymer electrolyte based on poly(vinylidene) fluoride-hexafluoropropylene was prepared by evaporating the solvent of dimethyl formamide, and non-woven fabric was used to reinforce the mechanical strength of polymer electrolyte and maintain a good interfacial property between the polymer electrolyte and electrodes. Polymer lithium batteries were assembled by using LiCoO2 as cathode material and lithium foil as anode material. Scanning electron microscopy, alternating current impedance, linear sweep voltammetry and charge-discharge tests were used to study the properties of polymer membrane and polymer Li-ion batteries. The results show that the technics of preparing polymer electrolyte by directly evaporating solvent is simple. The polymer membrane has rich micro-porous structure on both sides and exhibits 280% uptake of electrolyte solution. The electrochemical stability window of this polymer electrolyte is about 5.5 V, and its ionic conductivity at room temperature reaches 0.151 S/m. The polymer lithium battery displays an initial discharge capacity of 138 mA·h/g and discharge plateau of about 3.9 V at 0.2 current rate. After 30 cycles, its loss of discharge capacity is only 2%. When the battery discharges at 0.5 current rate, the voltage plateau is still 3.7 V. The discharge capacities of 0.5 and 1.0 current rates are 96% and 93% of that of 0.1 current rate, respectively.展开更多
文摘为代替纤维素纸(C-P)基电解质膜用于铝空气电池,利用静电纺丝技术制备了聚吲哚/聚丙烯腈(PIN/PAN)聚合物基电解质膜。采用SEM和FTIR对PIN/PAN纤维表面形貌及化学组成进行了分析。通过电化学工作站和电池测试系统分析了PIN含量对PIN/PAN聚合物基电解质膜离子电导率、离子扩散系数及固态铝空气电池放电性能的影响。结果表明,PIN/PAN纤维的孔隙率、吸液率、断裂伸长率与加入的PIN含量有关,同时对碱性溶液具有良好的吸附能力及机械性能,其中,PIN含量(以PAN溶液的质量为基准,其中,溶剂为N,N-二甲基甲酰胺,下同)为4%的PIN/PAN纤维(记为4%PIN/PAN纤维)的吸液率达496%、孔隙率为87.1%、断裂伸长率为8.7%,分别是C-P的3.2、1.1、3.8倍。基于PIN/PAN纤维制备的PIN/PAN聚合物基电解质膜可有效提升固态铝空气电池性能。其中,4%PIN/PAN聚合物基电解质膜在3、5、7 m A/cm^(2)电流密度下,放电时长比C-P铝空气电池分别提升约18%、32%、38%,离子电导率为6.7×10^(–4)S/cm,离子扩散系数为2.69×10^(–8)cm^(2)/S。
基金Project (2003AA32X010) supported by the National High Technology Research and Development Program of China
文摘A polymer electrolyte based on poly(vinylidene) fluoride-hexafluoropropylene was prepared by evaporating the solvent of dimethyl formamide, and non-woven fabric was used to reinforce the mechanical strength of polymer electrolyte and maintain a good interfacial property between the polymer electrolyte and electrodes. Polymer lithium batteries were assembled by using LiCoO2 as cathode material and lithium foil as anode material. Scanning electron microscopy, alternating current impedance, linear sweep voltammetry and charge-discharge tests were used to study the properties of polymer membrane and polymer Li-ion batteries. The results show that the technics of preparing polymer electrolyte by directly evaporating solvent is simple. The polymer membrane has rich micro-porous structure on both sides and exhibits 280% uptake of electrolyte solution. The electrochemical stability window of this polymer electrolyte is about 5.5 V, and its ionic conductivity at room temperature reaches 0.151 S/m. The polymer lithium battery displays an initial discharge capacity of 138 mA·h/g and discharge plateau of about 3.9 V at 0.2 current rate. After 30 cycles, its loss of discharge capacity is only 2%. When the battery discharges at 0.5 current rate, the voltage plateau is still 3.7 V. The discharge capacities of 0.5 and 1.0 current rates are 96% and 93% of that of 0.1 current rate, respectively.