期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
基于小批量梯度下降的布谷鸟搜索算法 被引量:4
1
作者 田媛 梁永全 《山东科技大学学报(自然科学版)》 CAS 北大核心 2020年第5期56-67,共12页
布谷鸟搜索算法是一种解决函数目标优化问题的全局搜索算法,具有选用参数少、容易实现、搜索路径优、寻优能力强等特点。为了提高布谷鸟搜索算法的求精能力和收敛速度,改善后期收敛慢和搜索精度不稳定的问题,提出了一种基于小批量梯度... 布谷鸟搜索算法是一种解决函数目标优化问题的全局搜索算法,具有选用参数少、容易实现、搜索路径优、寻优能力强等特点。为了提高布谷鸟搜索算法的求精能力和收敛速度,改善后期收敛慢和搜索精度不稳定的问题,提出了一种基于小批量梯度下降的布谷鸟搜索算法。引入小批量梯度下降,优化寻找最优解的过程,加快局部最优的搜索,从而提高算法的求精能力和收敛速度。仿真实验结果表明,基于小批量梯度下降的布谷鸟搜索算法简单高效,在保持标准布谷鸟搜索算法优点的基础上提高了算法的收敛速度和寻优精度,具有较强的稳定性和鲁棒性。 展开更多
关键词 布谷鸟搜索算法 列维飞行 函数目标优化 小批量梯度下降 全局最优解
在线阅读 下载PDF
联邦学习的社群化制造韧性能力预测建模
2
作者 张富强 王浩杰 +1 位作者 惠记庄 丁凯 《西安交通大学学报》 北大核心 2025年第8期11-19,共9页
针对社群化制造资源分散化布局的特点,以及传统集中式建模面临的数据隐私与信息孤岛等问题,提出了一种基于联邦学习的韧性能力预测框架,从多角度分析不同因素对产品生产加工工时的影响。首先,考虑不同工序中断情况,以订单交付周期为目... 针对社群化制造资源分散化布局的特点,以及传统集中式建模面临的数据隐私与信息孤岛等问题,提出了一种基于联邦学习的韧性能力预测框架,从多角度分析不同因素对产品生产加工工时的影响。首先,考虑不同工序中断情况,以订单交付周期为目标函数,搭建了工时扰动模型计算损失时间,进而基于分布式学习范式,搭建了联邦学习网络模型;其次,设计了联邦小批量梯度下降(FedMBGD)算法,明确算法流程并进行本地训练;最后,结合工时扰动模型和算法,对社群化制造的韧性能力进行预测,通过与其他算法的对比,验证了所提算法的可行性与有效性。研究结果表明:所提出的算法能够显著提升收敛性与寻优能力,可将预测精确度提高至90%以上,并且在不共享原始数据的前提下,实现了社群化制造韧性的动态精准预测,解决了数据隐私与协同建模之间的矛盾。该研究为社群化制造模式下韧性能力预测提供了理论参考,为隐私数据的算法训练、参数上传及信息共享提供了一定的指导意义。 展开更多
关键词 社群化制造 工时扰动 联邦小批量梯度下降算法 韧性能力预测
在线阅读 下载PDF
基于隐式随机梯度下降优化的联邦学习 被引量:12
3
作者 窦勇敢 袁晓彤 《智能系统学报》 CSCD 北大核心 2022年第3期488-495,共8页
联邦学习是一种分布式机器学习范式,中央服务器通过协作大量远程设备训练一个最优的全局模型。目前联邦学习主要存在系统异构性和数据异构性这两个关键挑战。本文主要针对异构性导致的全局模型收敛慢甚至无法收敛的问题,提出基于隐式随... 联邦学习是一种分布式机器学习范式,中央服务器通过协作大量远程设备训练一个最优的全局模型。目前联邦学习主要存在系统异构性和数据异构性这两个关键挑战。本文主要针对异构性导致的全局模型收敛慢甚至无法收敛的问题,提出基于隐式随机梯度下降优化的联邦学习算法。与传统联邦学习更新方式不同,本文利用本地上传的模型参数近似求出平均全局梯度,同时避免求解一阶导数,通过梯度下降来更新全局模型参数,使全局模型能够在较少的通信轮数下达到更快更稳定的收敛结果。在实验中,模拟了不同等级的异构环境,本文提出的算法比FedProx和FedAvg均表现出更快更稳定的收敛结果。在相同收敛结果的前提下,本文的方法在高度异构的合成数据集上比FedProx通信轮数减少近50%,显著提升了联邦学习的稳定性和鲁棒性。 展开更多
关键词 联邦学习 分布式机器学习 中央服务器 全局模型 隐式随机梯度下降 数据异构 系统异构 优化算法 快速收敛
在线阅读 下载PDF
带有随机改进Barzilai-Borwein步长的小批量稀疏随机方差缩减梯度法 被引量:1
4
作者 秦传东 杨旭 《计算机应用研究》 CSCD 北大核心 2023年第12期3655-3659,3665,共6页
为了更好地应对当今时代的大规模高维稀疏数据集,融合BB方法、小批量算法与随机方差缩减梯度法(SVRG)优势,提出一种带有随机改进Barzilai-Borwein步长的小批量稀疏随机方差缩减梯度法(MSSVRG-R2BB)。首先,在SVRG外循环中全梯度计算的基... 为了更好地应对当今时代的大规模高维稀疏数据集,融合BB方法、小批量算法与随机方差缩减梯度法(SVRG)优势,提出一种带有随机改进Barzilai-Borwein步长的小批量稀疏随机方差缩减梯度法(MSSVRG-R2BB)。首先,在SVRG外循环中全梯度计算的基础上加入L_1范数次梯度设计出一种稀疏近似梯度用于内循环,得到一种稀疏的SVRG算法(SSVRG)。在此基础上,在小批量的稀疏随机方差缩减梯度法中使用随机选取的改进BB方法自动计算、更新步长,解决了小批量算法的步长选取问题,拓展得到MSSVRG-R2BB算法。数值实验表明,在求解大规模高维稀疏数据的线性支持向量机(SVM)问题时,MSSVRG-R2BB算法不仅可以减小运算成本、更快达到收敛上界,同时能达到与其他先进的小批量算法相同的优化水平,并且对于不同的初始参数选取表现稳定且良好。 展开更多
关键词 随机梯度下降 小批量算法 Barzilai-Borwein方法 方差缩减 凸优化
在线阅读 下载PDF
基于纵向联邦学习的短期风电功率协同预测方法 被引量:7
5
作者 赵寒亭 张耀 +3 位作者 霍巍 王建学 吴峰 张衡 《电力系统自动化》 EI CSCD 北大核心 2023年第16期44-53,共10页
由于风力资源具有时空相关性,使用邻近场站的相关数据可以提高待预测场站的预测精度。然而不同场站通常分属不同发电集团,由于商业竞争和数据安全考量,彼此难以获得对方的隐私数据。针对上述问题,首先,提出了基于改进k近邻算法的岭回归... 由于风力资源具有时空相关性,使用邻近场站的相关数据可以提高待预测场站的预测精度。然而不同场站通常分属不同发电集团,由于商业竞争和数据安全考量,彼此难以获得对方的隐私数据。针对上述问题,首先,提出了基于改进k近邻算法的岭回归预测模型;然后,在纵向联邦学习的机制下,采用同步梯度下降算法对所提预测模型进行迭代求解;利用梯度向量可拆分计算的特点,推导了风电预测模型的分布式训练过程和分布式预测过程,将原本的大规模预测问题分解为大量的小规模子问题,且每个子问题由相应的风电场站在本地进行计算。在保证各参与方数据隐私安全的基础上,可以有效利用邻近场站的数据信息,从而提高风电功率预测精度。最后,以实际算例验证了所提方法的有效性。 展开更多
关键词 风电预测 岭回归 K近邻算法 梯度下降 纵向联邦学习 分布式优化
在线阅读 下载PDF
基于深度学习的帕金森患者声纹识别 被引量:3
6
作者 张颖 徐志京 《计算机工程与设计》 北大核心 2019年第7期2039-2045,共7页
90%的帕金森病(PD)患者存在声带紊乱,提出一种利用WMFCC提取患者的声纹特征、DNN识别并分类的方法用于区分PD患者和健康人。通过计算患者声纹中倒谱系数的加权和系数,解决高阶倒谱系数小、特征分量对音频的表征能力差等问题。DNN训练并... 90%的帕金森病(PD)患者存在声带紊乱,提出一种利用WMFCC提取患者的声纹特征、DNN识别并分类的方法用于区分PD患者和健康人。通过计算患者声纹中倒谱系数的加权和系数,解决高阶倒谱系数小、特征分量对音频的表征能力差等问题。DNN训练并分类识别有效地提高系统精度,使用MBGD优化算法降低损失函数的计算量,提高系统训练速度。针对PD database中样本测试分类,结果相较传统SVM等方法,该方法提高了判别PD准确率,可达87.5%,为PD患者早期快速辅助诊断提供了良好的解决方案。 展开更多
关键词 帕金森病 加权梅尔倒谱系数 深度神经网络 声纹特征 小批量梯度下降优化算法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部