期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
一种层次化的联合识别模型 被引量:1
1
作者 陈耀东 李仁发 《计算机研究与发展》 EI CSCD 北大核心 2015年第11期2431-2440,共10页
目标检测与姿态估计在当前视觉研究中分属不同的任务,但两者在研究方法和现实应用上具有较强的互补性.提出了一种混合的层次树模型,该模型包含3类结点,分别描述整体目标、判别部件和组件(即语义部件).中间层的判别部件兼顾承上(目标)与... 目标检测与姿态估计在当前视觉研究中分属不同的任务,但两者在研究方法和现实应用上具有较强的互补性.提出了一种混合的层次树模型,该模型包含3类结点,分别描述整体目标、判别部件和组件(即语义部件).中间层的判别部件兼顾承上(目标)与启下(组件)的功能,一方面刻画整体目标的局部特征,另一方面隐含多组件的共现信息.相比当前最新的联合模型,层次树模型能够并行化处理检测与估计,避免串联化联合引发的错误传播.采用基于隐变量的结构化支持向量机训练模型,同时提出了一种新的部件学习方法以自动地初始化和优化判别部件.实验设计了多任务识别和单任务识别2种评估场景,对比了本文模型与当前主流的联合识别模型,实验结果说明层次化模型具有更强的识别性能以及更高的时效性. 展开更多
关键词 联合识别模型 姿态估计 目标检测 部件模型 结构化支持向量机 隐变量
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部