期刊文献+
共找到454篇文章
< 1 2 23 >
每页显示 20 50 100
脉冲耦合神经网络下多视角激光图像点云配准 被引量:1
1
作者 李玮琳 曾琪峰 李颖 《激光杂志》 北大核心 2024年第12期125-130,共6页
多视角配准能够保持场景中物体的几何一致性,但是存在大量遮挡情况,不同视角下的可见性和完整性受限。对此,提出一种脉冲耦合神经网络下多视角激光图像点云配准方法。通过对多视角激光图像的像素噪声响应和灰度分布特性进行分析,得出脉... 多视角配准能够保持场景中物体的几何一致性,但是存在大量遮挡情况,不同视角下的可见性和完整性受限。对此,提出一种脉冲耦合神经网络下多视角激光图像点云配准方法。通过对多视角激光图像的像素噪声响应和灰度分布特性进行分析,得出脉冲耦合神经网络中各个神经元的关键参数,从而确定与神经元对应的动态阈值,实现激光图像多视角分割。分别计算多视角激光图像点云中各个点的三维特征描述子,进行最近邻关系匹配,组建点云关系集合,通过三元组约束优化关系集合识别错误关系点,以关系集中匹配点对之间的误差平方和组建目标函数,通过优化目标函数确定最佳多视角激光图像点云配准方案。实验结果表明,所提方法应用后,区域内部均匀性、区域对比度和最大香农熵较大,点云重叠以及虚假匹配关系较少,降低了Q值。可以有效提升多视角激光图像点云配准结果的精准度。 展开更多
关键词 脉冲耦合神经网络 多视角 激光图像 点云配准
在线阅读 下载PDF
一种粒子群优化脉冲耦合神经网络的全色锐化算法
2
作者 赵志威 付昱凯 杨树文 《航天返回与遥感》 CSCD 北大核心 2024年第5期51-63,共13页
为了进一步降低多光谱与全色影像融合后的光谱和空间信息失真,提高融合质量,文章提出一种粒子群优化脉冲耦合神经网络的多光谱与全色影像融合算法。该算法基于主成分分析和非下采样剪切波搭建融合方法的基础融合框架,在低频系数融合过... 为了进一步降低多光谱与全色影像融合后的光谱和空间信息失真,提高融合质量,文章提出一种粒子群优化脉冲耦合神经网络的多光谱与全色影像融合算法。该算法基于主成分分析和非下采样剪切波搭建融合方法的基础融合框架,在低频系数融合过程中使用细节注射的融合方法,降低非必要的信息注射,从而提高光谱保持度。在融合高频系数时,采用参数自适应的简化脉冲耦合神经网络计算融合权重,并基于粒子群优化算法全局搜索能够获取最佳融合质量的对应参数,以提高空间信息的完整性和清晰度。文章通过三组实验验证提出算法的可行性,并与现有的、经典的融合算法进行对比,实验显示:文章提出的融合算法在三组实验中的光谱角映射均在0.1左右,通用图像质量指数在0.9以上。实验结果表明:该算法不仅能够有效提高全色与多光谱影像的融合质量,而且融合效果稳健,在对比实验中具有最佳的融合性能。 展开更多
关键词 全色与多光谱影像 遥感影像融合 脉冲耦合神经网络 粒子群优化算法
在线阅读 下载PDF
利用脉冲耦合神经网络的高光谱多波段图像融合方法 被引量:9
3
作者 常威威 郭雷 +1 位作者 付朝阳 刘坤 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2010年第3期205-209,235,共6页
针对高光谱图像波段众多、数据量大的特点,提出了一种基于脉冲耦合神经网络(Pulse Coupled Neural Networks,PCNN)模型的高光谱多波段图像融合方法.根据高光谱图像多输入的特点对原始PCNN模型进行了扩充,采用多通道PCNN模型来对输入图... 针对高光谱图像波段众多、数据量大的特点,提出了一种基于脉冲耦合神经网络(Pulse Coupled Neural Networks,PCNN)模型的高光谱多波段图像融合方法.根据高光谱图像多输入的特点对原始PCNN模型进行了扩充,采用多通道PCNN模型来对输入图像进行非线性融合处理.通过分析传统变阈值衰减模型的特点及其不足,提出了修正的变阈值指数增加模型,以改善融合效果和降低PCNN运行的时间复杂度.利用记录点火时刻的赋时矩阵得到带有一定增强效果的融合结果图像.实验结果表明,该方法的融合效果要优于传统的主成分分析融合方法和小波变换融合方法. 展开更多
关键词 高光谱图像 图像融合 脉冲耦合神经网络 多通道脉冲耦合神经网络模型
在线阅读 下载PDF
改进的脉冲耦合神经网络人脸特征提取方法 被引量:3
4
作者 王晅 杨光 《计算机工程与应用》 CSCD 2013年第1期213-216,共4页
针对基于子空间分解的人脸特征提取方法对人脸图像在采集过程中的光照、旋转、位置等变化较为敏感的问题,提出了一种改进的脉冲耦合神经网络人脸特征提取方法。该方法模拟生物视觉的感知过程,将人脸图像分解成由若干二值图像组成的认知... 针对基于子空间分解的人脸特征提取方法对人脸图像在采集过程中的光照、旋转、位置等变化较为敏感的问题,提出了一种改进的脉冲耦合神经网络人脸特征提取方法。该方法模拟生物视觉的感知过程,将人脸图像分解成由若干二值图像组成的认知序列,计算序列中的每幅二值图像的熵作为人脸特征,基于支持向量机实现分类与识别;同时克服了标准的脉冲耦合神经网络模型参数过多的缺点,识别率也有所改善。理论与实验结果表明,该方法与现有的基于子空间分解的人脸特征提取方法相比,对人脸图像在采集过程中的光照、旋转、位置等变化有较强的鲁棒性,而且具有较低的维数。 展开更多
关键词 脉冲耦合神经网络(PCNN) 改进的脉冲耦合神经网络(M-PCNN) 人脸识别 特征提取 信息熵 支持向量机(SVM)
在线阅读 下载PDF
三维连接系数矩阵的脉冲耦合神经网络彩色图像分割
5
作者 王霞 郭林 王蒙军 《科学技术与工程》 北大核心 2015年第6期231-235,共5页
提出三维连接系数矩阵的脉冲耦合神经网络(3D-PCNN)模型,将二维连接系数矩阵扩展成三维,值取空间欧氏距离的倒数,提出指数上升的动态阈值。利用神经元脉冲同步发放特性和自动波特性,直接分割彩色图像。结果表明,3D-PCNN算法与其他分割... 提出三维连接系数矩阵的脉冲耦合神经网络(3D-PCNN)模型,将二维连接系数矩阵扩展成三维,值取空间欧氏距离的倒数,提出指数上升的动态阈值。利用神经元脉冲同步发放特性和自动波特性,直接分割彩色图像。结果表明,3D-PCNN算法与其他分割算法相比,运行时间减少了25%以上;该算法能够将不同区域信息以多层次彩色显示,改变RGB分量输入顺序时,同样可以分辨出更多的图像细节信息,分割精度高。 展开更多
关键词 彩色图像分割 脉冲耦合神经网络 三维连接系数矩阵 三维立体脉冲耦合神经网络
在线阅读 下载PDF
一种基于脉冲耦合神经网络和图像熵的自动图像分割方法 被引量:146
6
作者 马义德 戴若兰 李廉 《通信学报》 EI CSCD 北大核心 2002年第1期46-51,共6页
90年代发展形成的脉冲耦合神经网络(PCNN)模型特别适合于图像分割、边缘提取等方面的应用研究,但众所周知,PCNN模型图像分割效果不但取决于PCNN模型中各个参数的合理选择,而且同时还取决于循环迭代次数的确定选择准则,通常循环迭代次数... 90年代发展形成的脉冲耦合神经网络(PCNN)模型特别适合于图像分割、边缘提取等方面的应用研究,但众所周知,PCNN模型图像分割效果不但取决于PCNN模型中各个参数的合理选择,而且同时还取决于循环迭代次数的确定选择准则,通常循环迭代次数N的选择通过人工交互方式来确定。正因如此选择合适的准则来确定N是PCNN图像分割的关键,但目前还没有文献提出一个合适的准则来解决这个问题。本文结合图像统计特性和PCNN参数模型提出了熵值最大准则。该准则实现了PCNN神经网络的自动图像分割。对于PCNN的理论研究和实际应用具有非常重要的现实意义。 展开更多
关键词 脉冲耦合神经网络 图像分割 图像熵 统计特性
在线阅读 下载PDF
自适应脉冲耦合神经网络与匹配滤波器相结合的视网膜血管分割 被引量:15
7
作者 徐光柱 张柳 +2 位作者 邹耀斌 夏平 雷帮军 《光学精密工程》 EI CAS CSCD 北大核心 2017年第3期756-764,共9页
针对眼底图像中血管与背景间对比度低以及血管自身结构复杂等因素对视网膜血管分割所带来的问题,本文提出了一种具有自适应连接值的脉冲耦合神经网络(PCNN)与高斯匹配滤波器相结合的视网膜血管分割方法。首先,利用对比度受限制的自适应... 针对眼底图像中血管与背景间对比度低以及血管自身结构复杂等因素对视网膜血管分割所带来的问题,本文提出了一种具有自适应连接值的脉冲耦合神经网络(PCNN)与高斯匹配滤波器相结合的视网膜血管分割方法。首先,利用对比度受限制的自适应直方图均衡化(CLAHE)技术与二维高斯匹配滤波器对血管区域的对比度进行有效增强。然后,利用经验阈值选择出一定的血管区域作为初始种子区域。接着,将带有快速连接机制的PCNN与种子区域增长思想相结合,通过自适应动态设置PCNN中的连接强度系数和停止条件,实现眼底图像中血管区域的自动生长。整个算法在DRIVE视网膜图像库中进行了测试,实验结果表明,相比于不使用动态连接强度系数与停止条件的方法,所提出算法的灵敏度从49.79%提高至70.39%,准确度从95%提高到95.39%。证明了该算法具有较好的分割精确度和应用价值。 展开更多
关键词 视网膜图像处理 血管分割 脉冲耦合神经网络(PCNN) 高斯匹配滤波器 快速连接
在线阅读 下载PDF
脉冲耦合神经网络在图像处理中的参数确定 被引量:20
8
作者 于江波 陈后金 +1 位作者 王巍 李居朋 《电子学报》 EI CAS CSCD 北大核心 2008年第1期81-85,共5页
脉冲耦合神经网络(PCNN)模型可有效地应用于图像处理领域.但目前在PCNN模型理论方面的研究较少,参数的确定仍停留在经验阶段,这很大程度上限制了PCNN模型的发展.本文对PCNN模型进行理论上的推导,特别是模型各参数对PCNN特性的影响,给出... 脉冲耦合神经网络(PCNN)模型可有效地应用于图像处理领域.但目前在PCNN模型理论方面的研究较少,参数的确定仍停留在经验阶段,这很大程度上限制了PCNN模型的发展.本文对PCNN模型进行理论上的推导,特别是模型各参数对PCNN特性的影响,给出了PCNN模型应用于图像处理中各参数确定的准则.在将其应用于眼底图像处理中,取得与人工参数选取相似的效果,表现出较好的鲁棒性. 展开更多
关键词 脉冲耦合神经网络 参数确定 计算机仿真 图像处理
在线阅读 下载PDF
基于视觉显著性和脉冲耦合神经网络的成熟桑葚图像分割 被引量:19
9
作者 贺付亮 郭永彩 +1 位作者 高潮 陈静 《农业工程学报》 EI CAS CSCD 北大核心 2017年第6期148-155,共8页
为了提高在自然采摘环境中成熟桑葚机器视觉识别的有效性和鲁棒性,克服图像目标形态小、分布杂散、背景干扰多和光照不均匀等困难,该文提出了一种采用视觉显著性和脉冲耦合神经网络(pulse coupled neural network,PCNN)模型的成熟桑葚... 为了提高在自然采摘环境中成熟桑葚机器视觉识别的有效性和鲁棒性,克服图像目标形态小、分布杂散、背景干扰多和光照不均匀等困难,该文提出了一种采用视觉显著性和脉冲耦合神经网络(pulse coupled neural network,PCNN)模型的成熟桑葚图像分割方法。该方法首先将采集的图像映射到Lab颜色空间,利用空间颜色分量的算术平均值和高斯滤波值之间的差异,构建起桑葚图像的频率调谐视觉显著图;其次,提取采集图像在HSI颜色空间的色调分量,经过均衡化处理后,与视觉显著图进行融合,实现桑葚目标的融合特征表达;最后,通过改进的分层阈值化脉冲耦合神经网络模型进行目标分割以及形态学处理,得到成熟桑葚的识别结果。利用从重庆市天府镇果桑生态园采集到的200余幅桑树挂果图像进行试验,结果表明,该方法能够在不同光照条件的复杂背景下,有效分割出成熟果实,平均误分率为1.87%,优于结合频率调谐视觉显著性的OTSU法(17.73%)、K-means聚类算法(10.69%)、基于Itti视觉显著性的PCNN分割方法(7.34%)和基于GBVS(graph-based visual saliency,GBVS)视觉显著性的PCNN分割方法(5.83%)。研究结果为成熟桑葚果实的智能化识别提供参考。 展开更多
关键词 图像分割 机器视觉 模型 桑葚 视觉显著性 频率调谐 脉冲耦合神经网络
在线阅读 下载PDF
利用脉冲耦合神经网络的图像融合 被引量:13
10
作者 陈浩 朱娟 +1 位作者 刘艳滢 王延杰 《光学精密工程》 EI CAS CSCD 北大核心 2010年第4期995-1001,共7页
为了获得对同一场景更为准确、全面和可靠的图像描述,提出了一种基于脉冲耦合神经网络(PCNN)的图像融合方法。将多源传感器图像配准后的各个源图像用9/7小波变换的提升算法进行分解,从而得到各个源图像的低频分量和高频分量。对于低频分... 为了获得对同一场景更为准确、全面和可靠的图像描述,提出了一种基于脉冲耦合神经网络(PCNN)的图像融合方法。将多源传感器图像配准后的各个源图像用9/7小波变换的提升算法进行分解,从而得到各个源图像的低频分量和高频分量。对于低频分量,采用像素绝对值选大法进行融合;而高频分量则作为PCNN的输入,在迭代结束后,通过比较PCNN点火次数得到一系列融合子图像;然后,用9/7小波的提升算法将获取的一系列多尺度融合子图像进行反变换得到最终的融合图像。设计了可见光图像与红外图像的融合实验,对融合图像的熵、平均梯度、标准差、空间频率进行了定量比较。当使用标准源图像进行融合时,各值比使用传统小波变换与PCNN相结合的图像融合方法分别高0.0104,0.2459,0.1131和0.2846。 展开更多
关键词 红外图像 图像融合 9/7小波 提升算法 脉冲耦合神经网络
在线阅读 下载PDF
基于脉冲耦合神经网络的图像NMI特征提取及检索方法 被引量:14
11
作者 刘勍 许录平 +1 位作者 马义德 王勇 《自动化学报》 EI CSCD 北大核心 2010年第7期931-938,共8页
为了简单有效地提取图像重要特征信息,从而更好地提高检索图像的精度,提出了一种基于脉冲耦合神经网络(Pulse coupled neural networks,PCNN)的图像归一化转动惯量(Normalized moment of inertia,NMI)特征提取及检索算法.首先利用改进简... 为了简单有效地提取图像重要特征信息,从而更好地提高检索图像的精度,提出了一种基于脉冲耦合神经网络(Pulse coupled neural networks,PCNN)的图像归一化转动惯量(Normalized moment of inertia,NMI)特征提取及检索算法.首先利用改进简化PCNN模型相似神经元同步时空特性及指数衰降机制将图像分解为具有相关性的二值系列图像,然后提取反映原始图像目标形状、结构分布二值系列图像的一维NMI特征矢量信号,并将其应用在图像检索中;同时,考虑到二值系列图像间的相关性及不同图像间NMI序列值的差异性,引入了马氏距离结合Pearson积矩相关法的综合相似性度量方法.实验结果表明,所提算法对图像特征矢量序列具有良好抗几何畸变不变特性及对图像表述的唯一性,且具有较好的图像检索效果. 展开更多
关键词 图像处理 图像检索 脉冲耦合神经网络 二值序列图像 归一化转动惯量特征矢量 综合相似性度量
在线阅读 下载PDF
一种改进型脉冲耦合神经网络及其图像分割 被引量:13
12
作者 张军英 樊秀菊 +1 位作者 董继扬 石美红 《电子学报》 EI CAS CSCD 北大核心 2004年第7期1223-1226,共4页
本文结合人类视觉系统 (HVS)对图像信息含量区域敏感度不同这一特性 ,以神经元接近点火程度的一致性描述图像空间邻域所含的信息量 ,对通常的脉冲耦合神经网络模型 (PCNN -PulseCoupledNeuralNetwork)进行了改进 ,提出了一种基于改进PCN... 本文结合人类视觉系统 (HVS)对图像信息含量区域敏感度不同这一特性 ,以神经元接近点火程度的一致性描述图像空间邻域所含的信息量 ,对通常的脉冲耦合神经网络模型 (PCNN -PulseCoupledNeuralNetwork)进行了改进 ,提出了一种基于改进PCNN的图像自适应分割算法 .该算法根据象素及其周边区域的信息量大小发放不同值的脉冲 ,从而自适应地将图像分为多个不同等级的高低信息区域 ,较好地仿真了人类视觉系统特性 .最后对用这种方法进行图像分割的结果进行基于信息量的图像压缩 ,在压缩比和重建图像主观视觉感知质量上均达到了良好的性能 。 展开更多
关键词 脉冲耦合神经网络 图像分割 图像信息 图像压缩
在线阅读 下载PDF
应用小波变换的自适应脉冲耦合神经网络在图像融合中的应用 被引量:23
13
作者 武治国 王延杰 李桂菊 《光学精密工程》 EI CAS CSCD 北大核心 2010年第3期708-715,共8页
设计并实现了一种适用于红外与可见光图像融合的基于小波变换的自适应脉冲耦合神经网络(PCNN)融合技术。首先,对融合的两幅图像进行小波分解得到两组多尺度图像。然后,在小波域充分利用PCNN的同步激发特性,进行PCNN的融合策略设计;使用... 设计并实现了一种适用于红外与可见光图像融合的基于小波变换的自适应脉冲耦合神经网络(PCNN)融合技术。首先,对融合的两幅图像进行小波分解得到两组多尺度图像。然后,在小波域充分利用PCNN的同步激发特性,进行PCNN的融合策略设计;使用不同频率下小波系数的局域熵作为PCNN对应神经元的链接强度,经过PCNN点火获得参与融合图像在小波域中的点火映射图;根据点火时间计算点火映射梯度图,再通过判决选择算子,选择点火时间梯度最大的小波系数作为融合系数。最后,对融合后的小波系数进行重构生成融合图像。进行了两组图像融合实验,结果显示,在迭代次数为50次时,与经典小波方法相比,两组实验结果的熵分别提高1.1%,0.7%;平均梯度分别提高8.3%,3.7%;空间频率分别提高2.5%,1.5%;标准差分别提高1.9%,0.6%;交叉熵分别缩小5.6%,4.9%,结果表明本文方法用于红外与可见光图像的融合十分有效。 展开更多
关键词 图像融合 脉冲耦合神经网络 小波变换 局域熵 点火映射图
在线阅读 下载PDF
采用脉冲耦合神经网络的改进显著性区域提取方法 被引量:10
14
作者 贾松敏 徐涛 +1 位作者 董政胤 李秀智 《光学精密工程》 EI CAS CSCD 北大核心 2015年第3期819-826,共8页
由于仅考虑颜色等视觉对比信息的视觉显著性提取模型不符合人眼生物学过程,本文提出了一种基于混合模型的改进显著性区域提取(ISRE)方法。该混合模型由显著性滤波算法和改进脉冲耦合神经网络(PCNN)算法构成。首先,利用显著性滤波器算法... 由于仅考虑颜色等视觉对比信息的视觉显著性提取模型不符合人眼生物学过程,本文提出了一种基于混合模型的改进显著性区域提取(ISRE)方法。该混合模型由显著性滤波算法和改进脉冲耦合神经网络(PCNN)算法构成。首先,利用显著性滤波器算法获得原图像的初始显著性图(OSM)和亮度特征图(IFM),用IFM作为PCNN的输入神经元;然后,进一步对PCNN点火脉冲输入进行改进,即对PCNN内部神经元与OSM的二值化显著性图进行点乘,确定最终点火脉冲输入,以获得更加准确的点火范围;最后,通过改进后的PCNN多次迭代,完成显著性二值化区域提取。基于1 000张标准图像数据库进行的实验结果显示:在视觉效果和客观定量数据比对两方面,本算法均优于现有的5种显著性提取方法,平均查准率为0.891,平均召回率为0.808,综合指标F值为0.870。在真实环境实验中,所提算法获得了精确的提取效果,进一步验证了本算法具有较高的准确性和执行效率。 展开更多
关键词 混合模型 特征提取 改进显著性区域提取 脉冲耦合神经网络(PCNN) 点火脉冲 二值化
在线阅读 下载PDF
基于脉冲耦合神经网络和施密特正交基的一种新型图像压缩编码算法 被引量:8
15
作者 马义德 齐春亮 +2 位作者 钱志柏 史飞 张在峰 《电子学报》 EI CAS CSCD 北大核心 2006年第7期1255-1259,共5页
自从脉冲耦合神经网络(PCNN)被提出以来,在图像处理、模式识别、人工智能等领域得到了广泛应用.由于其生物学背景的特性,使得其能够对灰度图像进行完美的分割:PCNN局部连接域的作用及阈值指数衰减特性,使得具有近似灰度特性的邻近像素... 自从脉冲耦合神经网络(PCNN)被提出以来,在图像处理、模式识别、人工智能等领域得到了广泛应用.由于其生物学背景的特性,使得其能够对灰度图像进行完美的分割:PCNN局部连接域的作用及阈值指数衰减特性,使得具有近似灰度特性的邻近像素能够同时处于激活状态,这就构成了PCNN分割特性的基础,使得图像分割结果既能较好地包含原始图像细节信息,又能避免一些无意义的小分割块的产生.借鉴施密特正交化思想,利用自然初始基对每一分割区域进行变换,得到一组正交基的变换系数,相对于分割前图像的数据量大为减少,存储空间需求小,从而实现了压缩.相对于JPEG算法,该方法使重建图像的质量得到显著提高,同时也使得逐步重建图像成为可能. 展开更多
关键词 脉冲耦合神经网络 正交基 不规则分割区域 施密特正交化
在线阅读 下载PDF
基于改进的脉冲耦合神经网络的红外目标分割方法 被引量:11
16
作者 孔祥维 黄静 石浩 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2001年第5期365-369,共5页
针对红外目标的特点 ,提出了一种基于直方图的改进脉冲耦合神经网络 ( PCNN)图像分割方法 ,本算法摒弃了原有脉冲耦合神经网络模型中的时间指数下降机制 ,利用灰度直方图的知识直接获得 PCNN的分割门限 ,同时保留了弥补空间罅隙和灰度... 针对红外目标的特点 ,提出了一种基于直方图的改进脉冲耦合神经网络 ( PCNN)图像分割方法 ,本算法摒弃了原有脉冲耦合神经网络模型中的时间指数下降机制 ,利用灰度直方图的知识直接获得 PCNN的分割门限 ,同时保留了弥补空间罅隙和灰度微小变化的优点 .实验表明本算法分割得到的目标区域更加完整 。 展开更多
关键词 图像分割 脉冲耦合神经网络 红外目标 直方图 PCNN 红外对抗技术 图像处理
在线阅读 下载PDF
最小误差准则与脉冲耦合神经网络的裂缝检测 被引量:19
17
作者 赵慧洁 葛文谦 李旭东 《仪器仪表学报》 EI CAS CSCD 北大核心 2012年第3期637-642,共6页
表面裂缝检测能够有效判断混凝土桥梁出现的结构性危险。但裂缝特征的多样性、桥梁表面污点引起的图像噪声以及不均匀照明引起的灰度不均等给裂缝检测带来极大的困难。为能够在复杂背景下检测裂缝,分析裂缝图像特征,由脉冲耦合神经网络(... 表面裂缝检测能够有效判断混凝土桥梁出现的结构性危险。但裂缝特征的多样性、桥梁表面污点引起的图像噪声以及不均匀照明引起的灰度不均等给裂缝检测带来极大的困难。为能够在复杂背景下检测裂缝,分析裂缝图像特征,由脉冲耦合神经网络(pulse coupled neural networks,PCNN)的运行特征和神经元的状态变化分析简化PCNN模型,将简化PCNN模型用于裂缝图像的分割,根据最小误差准则判断PCNN迭代的终止条件,实现了PCNN的裂缝图像自动分割。由圆形度与扁度结合计算区域特征,去除分割后的各种干扰,实现表面裂缝的有效检测。通过敏感度和特异性计算绘制ROC(receiver operating charac-teristics)曲线,比较不同分割方法的曲线特性以评估算法,对实际裂缝图像的处理结果表明了该方法对裂缝图像检测的有效性。 展开更多
关键词 裂缝检测 脉冲耦合神经网络 最小误差准则 ROC曲线
在线阅读 下载PDF
基于灰度迭代阈值脉冲耦合神经网络的图像分割 被引量:9
18
作者 李海燕 张榆锋 +1 位作者 施心陵 陈建华 《计算机应用》 CSCD 北大核心 2011年第10期2753-2756,共4页
为有效分割图像,提出了灰度迭代阈值脉冲耦合神经网络(GIT-PCNN)。GIT-PCNN简化了传统PCNN模型,将其指数衰减的阈值改进为图像的灰度迭代阈值。GIT-PCNN分割图像时无需进行参数和循环次数选择,也无需使用特定原则确定循环结束条件,一次... 为有效分割图像,提出了灰度迭代阈值脉冲耦合神经网络(GIT-PCNN)。GIT-PCNN简化了传统PCNN模型,将其指数衰减的阈值改进为图像的灰度迭代阈值。GIT-PCNN分割图像时无需进行参数和循环次数选择,也无需使用特定原则确定循环结束条件,一次点火过程完成分割。GIT-PCNN分割图像时充分利用了图像的灰度信息和PCNN特有的空间邻近及像素灰度值相似集群发放脉冲提供的图像局部位置信息。实验结果表明,GIT-PCNN在主观及客观的分割性能和速度上均优于经典的PCNN分割方法。 展开更多
关键词 图像分割 脉冲耦合神经网络 指数衰减阈值 灰度迭代阈值 分割性能
在线阅读 下载PDF
基于参数自适应脉冲耦合神经网络的黄瓜目标分割 被引量:7
19
作者 王海青 姬长英 +1 位作者 顾宝兴 田光兆 《农业机械学报》 EI CAS CSCD 北大核心 2013年第3期204-208,共5页
对脉冲耦合神经网络的参数进行简化,并自适应确定各参数,将图像的空间信息和灰度信息耦合到加权耦合连接系数中,进行温室黄瓜图像分割,采用二维Tsallis熵选择最佳迭代结果。试验结果表明:用区域对比度(GC)和区域一致性(UC)评价方法评价... 对脉冲耦合神经网络的参数进行简化,并自适应确定各参数,将图像的空间信息和灰度信息耦合到加权耦合连接系数中,进行温室黄瓜图像分割,采用二维Tsallis熵选择最佳迭代结果。试验结果表明:用区域对比度(GC)和区域一致性(UC)评价方法评价,该方法的分割效果好于采用香农熵和最小交叉熵终止迭代的标准脉冲耦合神经网络分割效果。 展开更多
关键词 黄瓜 机器视觉 图像分割 参数自适应 脉冲耦合神经网络 加权耦合连接系数
在线阅读 下载PDF
基于最优广义S变换和脉冲耦合神经网络的轴承故障诊断 被引量:8
20
作者 张云强 张培林 +1 位作者 吴定海 李兵 《振动与冲击》 EI CSCD 北大核心 2015年第9期26-31,共6页
针对滚动轴承故障信号具有明显的非线性和非平稳特征,提出一种基于最优广义S变换和脉冲耦合神经网络(PCNN)的故障特征提取方法。首先采用基于时频聚集性最优化的广义S变换获取轴承故障信号的时频表示,然后利用脉冲耦合神经网络对最优广... 针对滚动轴承故障信号具有明显的非线性和非平稳特征,提出一种基于最优广义S变换和脉冲耦合神经网络(PCNN)的故障特征提取方法。首先采用基于时频聚集性最优化的广义S变换获取轴承故障信号的时频表示,然后利用脉冲耦合神经网络对最优广义S变换时频图进行二值分解,提取二值图像的捕获比序列用于表达故障信号的故障特征。对滚动轴承4种状态信号进行分析,验证方法的有效性。结果表明该方法能够提取出更加有效的轴承故障特征参数,有利于提高轴承故障诊断的精度。 展开更多
关键词 故障诊断 滚动轴承 特征提取 广义S变换 脉冲耦合神经网络
在线阅读 下载PDF
上一页 1 2 23 下一页 到第
使用帮助 返回顶部