The magnetohydrodynamic(MHD) boundary layer flow of Casson fluid in the presence of nanoparticles is investigated.Convective conditions of temperature and nanoparticle concentration are employed in the formulation. Th...The magnetohydrodynamic(MHD) boundary layer flow of Casson fluid in the presence of nanoparticles is investigated.Convective conditions of temperature and nanoparticle concentration are employed in the formulation. The flow is generated due to exponentially stretching surface. The governing boundary layer equations are reduced into the ordinary differential equations. Series solutions are presented to analyze the velocity, temperature and nanoparticle concentration fields. Temperature and nanoparticle concentration fields decrease when the values of Casson parameter enhance. It is found that the Biot numbers arising due to thermal and concentration convective conditions yield an enhancement in the temperature and concentration fields. Further, we observed that both the thermal and nanoparticle concentration boundary layer thicknesses are higher for the larger values of thermophoresis parameter. The effects of Brownian motion parameter on the temperature and nanoparticle concentration are reverse.展开更多
Two-dimensional boundary layer flow of an incompressible third grade nanofluid over a stretching surface is investigated.Influence of thermophoresis and Brownian motion is considered in the presence of Newtonian heati...Two-dimensional boundary layer flow of an incompressible third grade nanofluid over a stretching surface is investigated.Influence of thermophoresis and Brownian motion is considered in the presence of Newtonian heating and viscous dissipation.Governing nonlinear problems of velocity, temperature and nanoparticle concentration are solved via homotopic procedure.Convergence is examined graphically and numerically. Results of temperature and nanoparticle concentration are plotted and discussed for various values of material parameters, Prandtl number, Lewis number, Newtonian heating parameter, Eckert number and thermophoresis and Brownian motion parameters. Numerical computations are performed. The results show that the change in temperature and nanoparticle concentration distribution functions is similar when we use higher values of material parameters β1 andβ2. It is seen that the temperature and thermal boundary layer thickness are increasing functions of Newtonian heating parameter γ.An increase in thermophoresis and Brownian motion parameters tends to an enhancement in the temperature.展开更多
文摘The magnetohydrodynamic(MHD) boundary layer flow of Casson fluid in the presence of nanoparticles is investigated.Convective conditions of temperature and nanoparticle concentration are employed in the formulation. The flow is generated due to exponentially stretching surface. The governing boundary layer equations are reduced into the ordinary differential equations. Series solutions are presented to analyze the velocity, temperature and nanoparticle concentration fields. Temperature and nanoparticle concentration fields decrease when the values of Casson parameter enhance. It is found that the Biot numbers arising due to thermal and concentration convective conditions yield an enhancement in the temperature and concentration fields. Further, we observed that both the thermal and nanoparticle concentration boundary layer thicknesses are higher for the larger values of thermophoresis parameter. The effects of Brownian motion parameter on the temperature and nanoparticle concentration are reverse.
基金funded by the Deanship of Scientific Research (DSR), King Abdulaziz University (KAU), under Grant No. 37-130-35-HiCi
文摘Two-dimensional boundary layer flow of an incompressible third grade nanofluid over a stretching surface is investigated.Influence of thermophoresis and Brownian motion is considered in the presence of Newtonian heating and viscous dissipation.Governing nonlinear problems of velocity, temperature and nanoparticle concentration are solved via homotopic procedure.Convergence is examined graphically and numerically. Results of temperature and nanoparticle concentration are plotted and discussed for various values of material parameters, Prandtl number, Lewis number, Newtonian heating parameter, Eckert number and thermophoresis and Brownian motion parameters. Numerical computations are performed. The results show that the change in temperature and nanoparticle concentration distribution functions is similar when we use higher values of material parameters β1 andβ2. It is seen that the temperature and thermal boundary layer thickness are increasing functions of Newtonian heating parameter γ.An increase in thermophoresis and Brownian motion parameters tends to an enhancement in the temperature.