期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
一种改进的群搜索优化方法 被引量:3
1
作者 曾超 李娜 +1 位作者 王维 陈朝阳 《传感器与微系统》 CSCD 北大核心 2012年第9期28-31,共4页
标准的群搜索优化(GSO)方法是一种适用于解决高维函数优化问题的群智能算法,且简单、高效,易于实现。为了进一步提高其收敛速度和精度,对该方法进行了改进。在保留其"发现者—追随者—游荡者"框架的同时,改进的GSO方法将最大... 标准的群搜索优化(GSO)方法是一种适用于解决高维函数优化问题的群智能算法,且简单、高效,易于实现。为了进一步提高其收敛速度和精度,对该方法进行了改进。在保留其"发现者—追随者—游荡者"框架的同时,改进的GSO方法将最大下降方向策略引入发现者行为。在每轮迭代中,发现者不但按照自身方向进行搜索,同时也根据最大下降方向进行搜索。分别通过23个基准测试函数对2种优化方法进行测试,结果表明:改进的GSO方法优于标准群搜索方法。 展开更多
关键词 群搜索优化方法 函数优化 智能算法
在线阅读 下载PDF
PEMFCs degradation prediction based on ENSACO-LSTM
2
作者 JIA Zhi-huan CHEN Lin +2 位作者 SHAO Ao-li WANG Yu-peng GAO Jin-wu 《控制理论与应用》 北大核心 2025年第8期1578-1586,共9页
In this paper,a fusion model based on a long short-term memory(LSTM)neural network and enhanced search ant colony optimization(ENSACO)is proposed to predict the power degradation trend of proton exchange membrane fuel... In this paper,a fusion model based on a long short-term memory(LSTM)neural network and enhanced search ant colony optimization(ENSACO)is proposed to predict the power degradation trend of proton exchange membrane fuel cells(PEMFC).Firstly,the Shapley additive explanations(SHAP)value method is used to select external characteristic parameters with high contributions as inputs for the data-driven approach.Next,a novel swarm optimization algorithm,the enhanced search ant colony optimization,is proposed.This algorithm improves the ant colony optimization(ACO)algorithm based on a reinforcement factor to avoid premature convergence and accelerate the convergence speed.Comparative experiments are set up to compare the performance differences between particle swarm optimization(PSO),ACO,and ENSACO.Finally,a data-driven method based on ENSACO-LSTM is proposed to predict the power degradation trend of PEMFCs.And actual aging data is used to validate the method.The results show that,within a limited number of iterations,the optimization capability of ENSACO is significantly stronger than that of PSO and ACO.Additionally,the prediction accuracy of the ENSACO-LSTM method is greatly improved,with an average increase of approximately 50.58%compared to LSTM,PSO-LSTM,and ACO-LSTM. 展开更多
关键词 proton exchange membrane fuel cells swarm optimization algorithm performance aging prediction enhanced search ant colony algorithm data-driven approach deep learning
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部