期刊文献+
共找到369篇文章
< 1 2 19 >
每页显示 20 50 100
快速综合学习粒子群优化算法 被引量:3
1
作者 杨帆 乌景秀 +2 位作者 范子武 李子祥 朱沈涛 《水利水电技术(中英文)》 北大核心 2025年第2期30-44,共15页
【目的】粒子群优化算法在反问题求解、函数优化、数据挖掘、机器学习等研究领域广泛应用,但在求解复杂多峰问题时仍存在过早收敛的问题。为了提升粒子群算法在处理复杂多峰问题求解速度和精度,提出了快速综合学习粒子群优化算法(Fast C... 【目的】粒子群优化算法在反问题求解、函数优化、数据挖掘、机器学习等研究领域广泛应用,但在求解复杂多峰问题时仍存在过早收敛的问题。为了提升粒子群算法在处理复杂多峰问题求解速度和精度,提出了快速综合学习粒子群优化算法(Fast Comprehensive Learning Particle Swarm Optimization,FCLPSO)。【方法】FCLPSO算法引入粒子学习概率、个体影响概率、群体影响概率三个属性,表征每个粒子个体“与生俱来”的不同学习能力,同时新增强化学习、粒子重生等策略,提升算法收敛速度以及监测并跳出“伪收敛”状态。选用14个标准测试函数以及6种常用粒子群变体算法开展FCLPSO算法性能分析。【结果】结果显示:在收敛性方面,FCLPSO算法平均排名为1.86,排名第一次数为7次、排名第二的次数为2次、排名最后次数为0,最终综合排名第一;在鲁棒性方面,FCLPSO算法成功率排名第一,平均值为94.3%,14个测试函数中最低成功率为73.3%;达到阈值所需适应度评价次数最少,平均值40817,较其他算法评价次数少一半。【结论】结果表明:FCLPSO算法在收敛精度、收敛速度和鲁棒性方面排名综合第一,对复杂多峰问题求解更具优势,可为工程应用中复杂优化问题求解提供重要手段。 展开更多
关键词 粒子优化算法 强化学习 粒子属性 粒子重生 过早收敛 影响因素 人工智能 全局搜索
在线阅读 下载PDF
改进粒子群的多无人机协同搜索路径优化 被引量:2
2
作者 赵迅 刘云平 +3 位作者 王炎 还红华 徐梁 吴士林 《兵器装备工程学报》 北大核心 2025年第1期213-220,共8页
粒子群算法具有收敛速度快、结构简单、计算复杂度低等优点广泛应用于搜索领域,然而多无人机采用传统粒子群算法协同搜索时,由于算法具有随机性且群体内共享信息并未进行筛选,会出现搜索路径大量重复的现象,造成额外的资源消耗。针对此... 粒子群算法具有收敛速度快、结构简单、计算复杂度低等优点广泛应用于搜索领域,然而多无人机采用传统粒子群算法协同搜索时,由于算法具有随机性且群体内共享信息并未进行筛选,会出现搜索路径大量重复的现象,造成额外的资源消耗。针对此问题,提出一种改进粒子群的多无人机协同搜索算法。将传统粒子群算法应用于多无人机协同搜索,在此基础上利用蚁群算法对粒子群进行改进,通过蚁群算法对群体内共享的位置信息进行筛选,计算出信息素指引位置,然后将信息素指引位置用于无人机搜索过程中粒子群算法的迭代,从而减少无人机往复搜索的问题。仿真实验表明:该搜索算法可以有效降低搜索的重复路径,减少搜索的总路程。 展开更多
关键词 多无人机 粒子算法 算法 协同搜索 路径优化
在线阅读 下载PDF
基于模式搜索的粒子群优化光伏MPPT控制研究
3
作者 李润基 孟丽囡 《现代电子技术》 北大核心 2025年第12期83-88,共6页
光伏发电系统的输出功率具有显著的非线性特性,且易受辐照度、温度等环境因素扰动,导致功率输出不稳定。现有的最大功率点跟踪(MPPT)技术在动态环境下的追踪精度与响应速度仍存在不足。为此,提出一种基于模式搜索与粒子群优化(PSO)相结... 光伏发电系统的输出功率具有显著的非线性特性,且易受辐照度、温度等环境因素扰动,导致功率输出不稳定。现有的最大功率点跟踪(MPPT)技术在动态环境下的追踪精度与响应速度仍存在不足。为此,提出一种基于模式搜索与粒子群优化(PSO)相结合的最大功率点跟踪控制技术。该技术是将局部探索能力较强的模式搜索算法和全局开采能力较强的粒子群优化算法进行有效结合,从而提高光伏系统在各种环境条件下的效率。通过粒子群优化算法在可行域内进行全局搜索,同时引入柯西变异机制以扩大粒子搜索范围,增强算法的全局寻优能力;并且融合模式搜索法对搜索到的较优解进行局部寻优,以提高解的精度。仿真结果表明,通过两种算法的结合,所提方法能在更短时间内找到全局最大功率点;与标准粒子群优化算法相比,该混合算法在静态局部阴影、动态局部阴影两种工况下都能快速准确地追踪到最大功率点。 展开更多
关键词 最大功率点追踪 模式搜索技术 粒子优化算法 柯西变异 局部搜索 全局优化
在线阅读 下载PDF
基于网格算法和粒子群算法的随机森林参数优化 被引量:1
4
作者 周古辛 胡桂开 《安徽大学学报(自然科学版)》 北大核心 2025年第3期27-34,共8页
随机森林是一种高效且被广泛应用的集成机器学习算法,主要应用于回归、分类、特征选择等方面.为提高预测的准确度和稳定性,算法中的重要参数需要进一步优化.论文主要对该问题进行研究,并提出了一种基于网格算法和粒子群算法的参数优化方... 随机森林是一种高效且被广泛应用的集成机器学习算法,主要应用于回归、分类、特征选择等方面.为提高预测的准确度和稳定性,算法中的重要参数需要进一步优化.论文主要对该问题进行研究,并提出了一种基于网格算法和粒子群算法的参数优化方法.首先,利用网格算法对参数进行优化,得到参数的合理区间范围;其次,在该区间范围内利用粒子群算法对决策树数量和选择特征数量两个参数进一步优化;最后,利用经典案例将论文的方法与现有方法进行模拟比较.结果表明:该方法能够更好地减少袋外误差,提高预测的准确度. 展开更多
关键词 随机森林 参数优化 袋外误差 网格搜索 粒子算法
在线阅读 下载PDF
自适应策略优化的粒子群优化算法在神经网络架构搜索中的应用 被引量:2
5
作者 程金芮 金瑾 +3 位作者 张朝龙 孔超 何嘉 张鑫 《计算机应用》 CSCD 北大核心 2024年第S01期60-64,共5页
针对神经网络架构搜索(NAS)任务,提出一种自适应重启策略驱动的协作学习粒子群优化(ARCLPSO)算法。算法核心流程包括协作学习与信息共享、策略切换和参数自适应,以改进传统粒子群优化(PSO)算法在NAS中的性能。ARCLPSO算法结合了全局与... 针对神经网络架构搜索(NAS)任务,提出一种自适应重启策略驱动的协作学习粒子群优化(ARCLPSO)算法。算法核心流程包括协作学习与信息共享、策略切换和参数自适应,以改进传统粒子群优化(PSO)算法在NAS中的性能。ARCLPSO算法结合了全局与局部信息的协同作用和智能切换学习策略。具体地,ARCLPSO利用全局和局部信息的协同作用令粒子向更优的方向移动,通过智能的切换粒子学习策略平衡粒子的搜索性能和收敛速度,提高搜索速度和搜索质量。在NAS-Bench-101数据集上的实验结果表明,ARCLPSO的收敛时间相较于传统进化算法(REA)和随机搜索(RS),分别减少了40.9%和55.2%。 展开更多
关键词 神经网络架构搜索 粒子优化 进化算法 NAS-Bench-101 自适应的协作学习算法
在线阅读 下载PDF
基于蚁群优化算法的电镀试验台分组式调度方法研究
6
作者 汪守斌 王超 《电镀与精饰》 北大核心 2025年第6期9-15,57,共8页
电镀试验台分组式调度涉及多个试验台同时进行不同的电镀任务,每个任务有其特定的加工要求和顺序。然而,在实际操作中,由于任务分配不合理和加工顺序未优化,导致试验台之间的资源冲突、等待时间增加。为提高电镀试验台的工作效率,研究... 电镀试验台分组式调度涉及多个试验台同时进行不同的电镀任务,每个任务有其特定的加工要求和顺序。然而,在实际操作中,由于任务分配不合理和加工顺序未优化,导致试验台之间的资源冲突、等待时间增加。为提高电镀试验台的工作效率,研究基于蚁群优化算法的电镀试验台分组式调度方法。通过基于图论的电镀试验任务分组模型,将电镀试验任务进行合理分组。利用基于蚁群优化算法的分组式调度模型,设计一个旨在实现电镀试验任务加工耗时最短化的目标函数。通过运用蚁群优化算法,求解出满足该目标函数条件的最优分组式电镀任务与仪器的加工顺序,从而实现对电镀试验台的高效分组式调度。实验结果显示:蚁群优化算法使用下,电镀试验台的仪器设备资源使用率与负载均衡度优于对比方法,能够有效优化电镀试验台资源分配效果。 展开更多
关键词 优化算法 电镀任务 试验台 分组式调度 图论方法 深度优先搜索算法
在线阅读 下载PDF
应用反向学习策略的群搜索优化算法 被引量:25
7
作者 汪慎文 丁立新 +3 位作者 谢大同 舒万能 谢承旺 杨华 《计算机科学》 CSCD 北大核心 2012年第9期183-187,共5页
群搜索优化算法(Group Search Optimizer,GSO)是一类基于发现者-加入者(Producer-Scrounger,PS)模型的新型群体随机搜索算法。尽管该算法在解决众多问题中表现优越,但其依然面临着早熟和易陷入局部最优的问题,为此,提出了一种基于一般... 群搜索优化算法(Group Search Optimizer,GSO)是一类基于发现者-加入者(Producer-Scrounger,PS)模型的新型群体随机搜索算法。尽管该算法在解决众多问题中表现优越,但其依然面临着早熟和易陷入局部最优的问题,为此,提出了一种基于一般反向学习策略的群搜索优化算法(GOGSO)。该算法利用反向学习策略来产生反向种群,然后对当前种群和反向种群进行精英选择。通过对比实验表明,该方法效果良好。 展开更多
关键词 搜索优化算法 反向学习 数值优化
在线阅读 下载PDF
基于粒子群优化和变邻域搜索的混合调度算法 被引量:43
8
作者 潘全科 王文宏 +1 位作者 朱剑英 赵保华 《计算机集成制造系统》 EI CSCD 北大核心 2007年第2期323-328,共6页
提出了用于解决作业车间调度问题的离散版粒子群算法。该算法采用基于工序的编码和新的位置更新策略,使具有连续本质的粒子群算法直接适用于调度问题。同时,针对粒子群算法容易陷入局部最优的缺陷,利用粒子群算法和变邻域搜索算法的互... 提出了用于解决作业车间调度问题的离散版粒子群算法。该算法采用基于工序的编码和新的位置更新策略,使具有连续本质的粒子群算法直接适用于调度问题。同时,针对粒子群算法容易陷入局部最优的缺陷,利用粒子群算法和变邻域搜索算法的互补性能,设计了粒子群-变邻域搜索算法、改进的粒子群算法、粒子群-变邻域搜索交替算法和粒子群-变邻域搜索协同算法4种混合调度算法。仿真结果表明,混合算法能够有效地、高质量地解决作业车间调度问题。 展开更多
关键词 作业车间调度问题 粒子优化 变邻域搜索算法 混合算法
在线阅读 下载PDF
快速群搜索优化算法及其在电力系统经济调度中的应用 被引量:16
9
作者 詹俊鹏 郭创新 +1 位作者 吴青华 温柏坚 《中国电机工程学报》 EI CSCD 北大核心 2012年第S1期1-6,共6页
经济调度(economic dispatch,ED)是电力系统优化的一项重要工作。为得到一个更加精确且实用的ED模型,在模型中考虑了机组阀点效应和多燃料。该ED模型具有非凸、高维、非线性和不可微的特性,求解较为困难。为更好地求解该ED模型,提出一... 经济调度(economic dispatch,ED)是电力系统优化的一项重要工作。为得到一个更加精确且实用的ED模型,在模型中考虑了机组阀点效应和多燃料。该ED模型具有非凸、高维、非线性和不可微的特性,求解较为困难。为更好地求解该ED模型,提出一种快速群搜索优化算法(fast groupsearch optimizer,FGSO),该算法能以更少的计算资源得到更高的收敛精度。对3个测试系统的ED模型进行求解,结果表明,FGSO比其他算法收敛速度更快,计算时间更短,能得到更小的发电费用值,且在高维的、具有多局部最优点的复杂优化问题中具有更加突出的优势。因此,FGSO用于求解该复杂ED模型是可行的、快速的和有效的。 展开更多
关键词 经济调度 阀点效应 多燃料 搜索优化算法 遗传算法 粒子优化算法
在线阅读 下载PDF
禁忌搜索–粒子群算法在无功优化中的应用 被引量:43
10
作者 曾令全 罗富宝 丁金嫚 《电网技术》 EI CSCD 北大核心 2011年第7期129-133,共5页
禁忌搜索粒子群算法是针对粒子群算法局部搜索能力较弱和存在早熟收敛的问题,将禁忌搜索思想融入到粒子群算法中的混合算法,并将该算法应用到电力系统无功优化中。该方法在粒子群算法寻优过程的后期加入了禁忌表,扩大搜索空间,避免陷入... 禁忌搜索粒子群算法是针对粒子群算法局部搜索能力较弱和存在早熟收敛的问题,将禁忌搜索思想融入到粒子群算法中的混合算法,并将该算法应用到电力系统无功优化中。该方法在粒子群算法寻优过程的后期加入了禁忌表,扩大搜索空间,避免陷入局部最优。通过对IEEE 30节点测试系统和鸡西电网进行仿真计算,并与其他算法进行比较,结果表明该算法能取得更好的全局最优解,既加快了收敛速度,又提高了收敛精度。 展开更多
关键词 粒子优化算法 无功优化 禁忌搜索 网损
在线阅读 下载PDF
基于自适应Tent混沌搜索的粒子群优化算法 被引量:14
11
作者 黄美灵 赵之杰 +4 位作者 浦立娜 吴非 赵美玲 陈浩 陈明哲 《计算机应用》 CSCD 北大核心 2011年第2期485-489,共5页
为解决粒子群优化算法易于陷入局部最优问题,提出基于自适应Tent混沌搜索的粒子群优化算法。应用Tent映射初始化均匀分布的粒群,并以当前整个粒子群迄今为止搜索到的最优位置为基础产生Tent混沌序列,混沌序列的搜索范围采用自适应调整... 为解决粒子群优化算法易于陷入局部最优问题,提出基于自适应Tent混沌搜索的粒子群优化算法。应用Tent映射初始化均匀分布的粒群,并以当前整个粒子群迄今为止搜索到的最优位置为基础产生Tent混沌序列,混沌序列的搜索范围采用自适应调整方法。该方法可以有效避免计算的盲目性,还能够快速搜寻到最优解。实验表明该算法在多个标准测试函数下都超越了同类改进算法。 展开更多
关键词 粒子优化算法 TENT映射 自适应 混沌搜索
在线阅读 下载PDF
基于禁忌搜索与微粒群优化算法的混合优化策略算法在目标分配问题上的应用 被引量:17
12
作者 丁铸 马大为 +1 位作者 于存贵 张学锋 《兵工学报》 EI CAS CSCD 北大核心 2007年第9期1127-1131,共5页
目标分配是地面防空作战指挥的关键环节。给出问题模型,并提出一种禁忌搜索与改进微粒群算法的混合优化策略用于解决该问题。仿真结果表明,与其它几种智能优化算法相比,该混合优化策略在解决目标分配问题时具有优良的优化性能和时间性能... 目标分配是地面防空作战指挥的关键环节。给出问题模型,并提出一种禁忌搜索与改进微粒群算法的混合优化策略用于解决该问题。仿真结果表明,与其它几种智能优化算法相比,该混合优化策略在解决目标分配问题时具有优良的优化性能和时间性能,在问题规模较大时表现更为突出。 展开更多
关键词 运筹学 目标分配 微粒优化算法 禁忌搜索算法 混合优化策略
在线阅读 下载PDF
基于群搜索算法的电力系统无功优化 被引量:13
13
作者 刘华臣 王锡淮 +1 位作者 肖健梅 王海锋 《电力系统保护与控制》 EI CSCD 北大核心 2014年第14期93-99,共7页
为了提高电力系统的运行效率和经济性能,用群搜索优化算法(Group Search Optimizer)对电力系统各控制变量进行合理配置,以此减少电力系统无功损耗。群搜索优化算法是一种新兴的群智能优化算法,该算法把群成员分为发现者、追随者和游荡... 为了提高电力系统的运行效率和经济性能,用群搜索优化算法(Group Search Optimizer)对电力系统各控制变量进行合理配置,以此减少电力系统无功损耗。群搜索优化算法是一种新兴的群智能优化算法,该算法把群成员分为发现者、追随者和游荡者三种,其中游荡者的位置随机选定,这有效地避免了其他算法容易陷入局部最小值问题。选定电力系统中无功投入量、电压变比、发电机端电压等作为控制变量,通过群搜索优化算法对控制变量进行迭代计算和潮流计算,最终计算出最小的网络损耗及其对应的控制变量值。最后用Matlab7.6对IEEE-14、30节点系统进行仿真,并与其他群智能优化算法进行对比,结果显示,群搜索算法的收敛较快且稳定,最终证明了群搜索算法对无功优化的优越性。 展开更多
关键词 搜索优化算法 电力系统无功优化 潮流计算 IEEE节点系统
在线阅读 下载PDF
求解机组组合问题的嵌入贪婪搜索机制的改进粒子群优化算法 被引量:15
14
作者 孙力勇 张焰 蒋传文 《电网技术》 EI CSCD 北大核心 2006年第13期44-48,65,共6页
提出了一种求解机组组合问题的嵌入贪婪搜索机制的改进粒子群优化算法。其特点包括:采用固定阈值处理表示机组运行状态的0、1整型变量,从而可直接应用粒子群算法求解机组组合问题,避免求解各时段中的经济负荷分配子问题;在粒子群算法迭... 提出了一种求解机组组合问题的嵌入贪婪搜索机制的改进粒子群优化算法。其特点包括:采用固定阈值处理表示机组运行状态的0、1整型变量,从而可直接应用粒子群算法求解机组组合问题,避免求解各时段中的经济负荷分配子问题;在粒子群算法迭代过程中应用变异操作更新进化速度缓慢的粒子,增强了算法的搜索能力;算法收敛后,采用基于优先列表的贪婪搜索机制做进一步寻优,既加快了算法收敛速度,又提高了解的质量。算例结果表明所提出的方法在求解机组组合问题时具有很强的搜索能力和适应性。 展开更多
关键词 粒子优化算法 优先列表 贪婪搜索 变异操作 机组组合 经济负荷分配
在线阅读 下载PDF
基于差分进化粒子群混合算法的多无人机协同区域搜索策略 被引量:5
15
作者 赖幸君 唐鑫 +2 位作者 林磊 王志胜 丛玉华 《弹箭与制导学报》 北大核心 2024年第1期89-97,共9页
为提高无人机群在未知环境中的区域搜索效率,提出一种多无人机协同区域搜索策略。首先,根据区域搜索任务需求,建立包含区域覆盖率、区域不确定度、目标存在概率三种属性的区域信息地图;其次,以最大化搜索效率、同时最小化无人机搜索过... 为提高无人机群在未知环境中的区域搜索效率,提出一种多无人机协同区域搜索策略。首先,根据区域搜索任务需求,建立包含区域覆盖率、区域不确定度、目标存在概率三种属性的区域信息地图;其次,以最大化搜索效率、同时最小化无人机搜索过程中的能耗为目标,建立无人机区域搜索滚动时域优化目标函数,指导无人机在线决策搜索路线;然后针对传统群智能优化算法易陷入局部最优的缺陷,设计差分进化粒子群混合算法在线求解该多目标优化问题,提高算法的寻优性能,从而提高无人机的搜索效率。最后,通过数值仿真实验,对所提算法进行验证,仿真结果表明,文中设计的基于差分进化粒子群混合算法的多无人机协同区域搜索策略与传统的群智能优化算法相比具有更高的区域搜索效率。 展开更多
关键词 多无人机 协同搜索 智能算法 滚动时域优化 差分进化粒子混合算法
在线阅读 下载PDF
多目标群搜索优化算法及其在结构设计中的应用 被引量:13
16
作者 任凤鸣 王春 李丽娟 《广西大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第2期216-221,共6页
为克服工程结构多目标优化设计中遇到的边界处理困难、编程复杂、计算效率低等问题,结合Pareto最优解理论,将群搜索算法改进成多目标群搜索算法(multi-objective group search optimization,MGSO)。通过平面10杆桁架的连续变量优化及空... 为克服工程结构多目标优化设计中遇到的边界处理困难、编程复杂、计算效率低等问题,结合Pareto最优解理论,将群搜索算法改进成多目标群搜索算法(multi-objective group search optimization,MGSO)。通过平面10杆桁架的连续变量优化及空间25杆桁架的离散优化设计的算例,证明多目标群搜索算法在工程结构优化设计中的可行性与实用性。结果表明:多目标群搜索算法作为一种随机算法,其收敛速度快,在计算过程中只需要选择整体最优个体,不需要逐个检查约束,能节省大量的计算时间,对于高维问题,特别是复杂的工程实际问题,有明显的优越性。 展开更多
关键词 多目标优化 搜索算法 结构优化设计
在线阅读 下载PDF
群搜索优化算法中角色分配策略的研究 被引量:4
17
作者 汪慎文 丁立新 +3 位作者 谢承旺 谢大同 舒万能 杨华 《小型微型计算机系统》 CSCD 北大核心 2012年第9期1938-1943,共6页
群搜索优化算法把群体中的个体分为三种角色:发现者,加入者和游荡者.算法选择最优个体作为唯一的发现者,采用随机决策策略分配加入者和游荡者.该策略过于盲目,算法性能也较差.针对这一缺点,本文考虑个体与发现者的分布关系,以发现者为球... 群搜索优化算法把群体中的个体分为三种角色:发现者,加入者和游荡者.算法选择最优个体作为唯一的发现者,采用随机决策策略分配加入者和游荡者.该策略过于盲目,算法性能也较差.针对这一缺点,本文考虑个体与发现者的分布关系,以发现者为球心,聚集在球心(或圆心)周围的个体均为加入者,散布于球外的个体为游荡者.而球的半径大小的确定,提出两种不同的方法:自适应半径策略和固定加入者个体数量策略.前者取个体到发现者的平均距离的K倍作为球的半径,后者规定离发现者最近的一定数量的个体被认为分布于球内的加入者.通过实验表明,这两种策略提高了种群多样性的同时,还保证了算法快速收敛到最优解. 展开更多
关键词 体智能 搜索优化算法 发现 加入模型 角色分配
在线阅读 下载PDF
快速被动群搜索优化算法及其在空间结构中的应用 被引量:7
18
作者 刘锋 覃广 李丽娟 《工程设计学报》 CSCD 北大核心 2010年第6期420-425,共6页
在快速群搜索优化算法QGSO(quick group search opti mizer)基本原理的基础上,提出了改进的快速群搜索优化算法——快速被动群搜索优化算法QGSOPC(quick group search opti mizer with passive congregation),并应用于结构优化设计.采用... 在快速群搜索优化算法QGSO(quick group search opti mizer)基本原理的基础上,提出了改进的快速群搜索优化算法——快速被动群搜索优化算法QGSOPC(quick group search opti mizer with passive congregation),并应用于结构优化设计.采用QGSOPC优化算法分别对空间结构进行离散变量的截面优化设计,并与QGSO优化算法、群搜索优化算法GSO(group search opti mize)和启发式粒子群优化算法(HPSO)的计算结果进行比较,结果表明改进的快速被动群搜索优化算法QGSOPC与QGSO算法、GSO算法和HPSO算法相比不但具有较好的收敛精度和更快的收敛速度,而且具有很好的稳定性.该算法可有效率地应用于实际结构的优化设计. 展开更多
关键词 搜索优化算法 结构优化 稳定性 收敛精度 收敛速度
在线阅读 下载PDF
一种基于差分策略的群搜索优化算法 被引量:7
19
作者 熊聪聪 郝璐萌 +1 位作者 王丹 邓雪晨 《计算机科学》 CSCD 北大核心 2017年第2期250-256,共7页
针对群搜索优化(Group Search Optimizer,GSO)算法易陷入局部最优、收敛速度较慢、收敛精度较低等问题,提出一种基于差分策略的群搜索优化(Differential Ranking-based Group Search Optimizer,DRGSO)算法。主要进行两方面改进:1)按照... 针对群搜索优化(Group Search Optimizer,GSO)算法易陷入局部最优、收敛速度较慢、收敛精度较低等问题,提出一种基于差分策略的群搜索优化(Differential Ranking-based Group Search Optimizer,DRGSO)算法。主要进行两方面改进:1)按照适应度值的大小对种群进行排序,适当增加发现者的数目,使种群能够获得更好的启发式信息,加快了算法的收敛速度,有效地避免了算法陷入局部最优;2)在发现者搜索过程中,引入4种不同的差分变异策略,提高了算法的收敛精度,增强了算法的群体多样性在。11组国际标准测试函数上的实验测试结果显示,与GA,GSO,PSO算法相比,DRGSO算法具有较强的全局搜索能力以及局部资源勘探能力,算法整体收敛性能明显提高。 展开更多
关键词 搜索优化算法 差分变异 收敛速度 收敛精度
在线阅读 下载PDF
基于群搜索优化算法的配电网重构 被引量:6
20
作者 李鹏 江辉 +1 位作者 孙芊 周娟 《电网技术》 EI CSCD 北大核心 2010年第12期114-118,共5页
提出了基于群搜索优化算法的配电网重构方法,以系统有功网损最小为目标建立了配电网重构模型,选择种群中网损最小的个体为发现者,剩余个体分别作为加入者和游荡者。在寻优过程中,应用快速支路交换法对发现者进行局部物理寻优,加入者向... 提出了基于群搜索优化算法的配电网重构方法,以系统有功网损最小为目标建立了配电网重构模型,选择种群中网损最小的个体为发现者,剩余个体分别作为加入者和游荡者。在寻优过程中,应用快速支路交换法对发现者进行局部物理寻优,加入者向发现者逐步靠近执行追随搜索,游荡者在解空间中随机搜索。该方法实现了全局搜索与局部寻优的良好配合,提高了搜索效率,具有较好的全局收敛性。算例结果验证了该方法的有效性。 展开更多
关键词 配电网重构 搜索优化算法 支路交换法
在线阅读 下载PDF
上一页 1 2 19 下一页 到第
使用帮助 返回顶部